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This paper studies the equilibrium behavior of customers in continuous/discrete time
queueing systems under single vacation policy. In the single vacation queueing system,
the server can only take exactly one vacation when no customers exist in the system. This
scheme is more practical under many specific circumstances. Based on the reward–cost
structure, equilibrium behavior is considered in the fully observable and almost observable
cases. The threshold strategies in equilibrium are obtained and the stationary system
behavior is analyzed under the corresponding strategies. Finally, we illustrate the effect
of the information level as well as several parameters on the equilibrium thresholds and
social benefits via numerical experiments. The research results could instruct the custom-
ers to take optimal strategies and provide the managers with reference information on the
pricing problem in the queueing system.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

For several decades, queueing systems with regard to the equilibrium behavior of customers have aroused increasing
attention due to their applications for management in service system and electronic commerce. It was first introduced by
Naor [1], who studied equilibrium and social optimal strategies for the joining-balking dilemma in an M/M/1 queue with
a simple linear reward–cost structure. Afterwards, Naor’s model and results were further refined and extended by several
researchers such as Yechiali [2], Johansen and Stidham [3], Stidham [4] and Mendelson and Whang [5]. Chen and Frank
[6] generalized Naor’s model assuming that both the customers and the server maximize their expected discounted utility
using a common discount rate. Larsen [7] considered another generalization of Naor’s model assuming the customers differ
by their service values. Erlichman and Hassin [8] discussed a single server Markovian queue allowing customers to overtake
others. Various observable models can be found in the monographs of Hassin and Haviv [9].

As for the research on the equilibrium customer behavior in queues with vacations, the first was presented by Burnetas
and Economou [10] who explored a single server Markovian queue with exponential setup times. Subsequently, Economou
and Kanta [11] considered the Markovian queue that alternates between on and off periods in observable case. Sun et al. [12]
presented the equilibrium customer behavior in an observable M/M/1 queue under interruptible and insusceptible setup/
closedown policies. Recently, Economou et al. [13] analyzed the optimal balking strategies in single-server queues with gen-
eral service and vacation times. However, there is no work concerning the equilibrium customer behavior in the single vaca-
tion queueing systems.
. All rights reserved.
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A considerable amount of work has been done on the vacation queues in the past, due to the extensively use in commu-
nication systems, computer networks, etc. Levy and Yechiali [14,15] were first to study the M/G/1 and M/M/c queueing mod-
els with single vacation. Later, several excellent surveys were given by Doshi [16] and Takagi [17,18]. Choudhury [19] and
Sikdar and Gupta [20] dealt with an M/G/1 batch arrival queue and an M/G/1 batch service queue respectively. Madan and Al-
Rawwash [21] did research on the Mx/G/1 queue with feedback and optional server vacations under single vacation policy.
Gupta and Sikdar [22] assumed the input process is a Markovian arrival process instead of Poisson input. A comprehensive
study in vacation queueing models can be found in Takagi [23] and Tian and Zhang [24].

So far, there exists no literature studying the single vacation queueing system from an economic viewpoint. It motivates
us to explore the economics of single vacation queues which is more practical under many specific circumstances. Customers
are in a dilemma whether to join the system or to balk. They make decisions based on a nature reward–cost structure, which
incorporates their desire for service as well as their unwillingness to wait. In the observable system, customers are informed
of the queue length upon arrival. As to the fully observable case, the arriving customer not only knows the number of present
customers but also the state of the server. However, in the almost observable case a customer only observes the queue length
before making decision.

The reminder of this paper is organized as follows. Section 2 presents the description of the model. Section 3 develops the
fully and almost observable cases in continuous-time queueing system. We derive the equilibrium threshold strategies and
analyze the corresponding stationary system behavior. Then in Section 4, we consider the equilibrium strategies and various
performance measures in the discrete-time queueing system. The numerical discussions of thresholds and social benefits are
postponed to Section 5. Finally, the concludes come in Section 6.

2. Model description

We consider a single server queueing system with infinite capacity. The server takes exactly one vacation immediately at
the end of each busy period. If it finds no customers in the system upon returning from the vacation, it becomes idle until a
customer arrives. When a customer arrives, it immediately starts to serve it. We assume that inter-arrival times, service
times and vacation times are mutually independent. In addition, the queueing system follows First-Come-First-Served
(FCFS) service discipline. Suppose Se be the mean sojourn time of a customer in equilibrium and Be be the expected net
benefit.

Our interest is in the behavior of customers when they decide whether to join or to balk upon their arrival. To model the
decision process we assume that every customer receives a reward of R units for completing service. This may reflect his
satisfaction and the added value of being served. On the other hand, there exists a waiting cost of C units per time unit that
the customer remains in the system (in queue or in service). Customers are risk neutral and maximize their expected net
benefit. From now on, we assume the condition
R >
C
lþ

C
h
; ð1Þ
where l is the service rate and h is the vacation rate. This condition ensures that the reward for service exceeds the expected
waiting cost for a customer who finds the system empty. Otherwise, after the system becomes empty for the first time no
customers will ever enter. Finally, the decisions are irrevocable: retrials of balking customers and reneging of entering cus-
tomers are not allowed.

3. Analysis of continuous queue

We first consider the continuous-time queueing system. Suppose that customers arrive according to a Poisson process
with rate k. Service times of the customers and vacation times are assumed to be exponentially distributed random variables.
We denote the service rate and vacation rate by lc and hc respectively.

We represent the state at time t by the pair (N(t), I(t)), where N(t) denotes the number of the customers in the system and
I(t) denotes the state of the server. Define the system is in a regular busy period as state 1 and in a vacation period as state 0.
Thus, state (0,1) indicates that the system is in the idle period; state (n,1), n = 1,2, . . . , indicates that the system is in the
regular busy period and there are n customers; state (n,0), n = 0,1,2, . . . , indicates that the system is in the vacation period
and there are n customers. Hereinafter, the subscript c means the continuous-time queue, fo means fully observable and ao
means almost observable.

3.1. Fully observable case

We begin with the fully observable case in which the arriving customers not only know the number of present customers
N(t) but also the state of the server I(t) at arrival time t. It is obvious that the process {(N(t),I(t))jt P 0} is a continuous-time
Markov chain with state space Xcfo = {(n, i)jn P 0, i = 0,1}. In equilibrium, a customer who joins the system when he observes
state (n, i) has the mean sojourn time Se ¼ nþ1

lc
þ 1�i

hc
, which is composed of two parts: the mean service time and the mean

vacation time.
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Thus his expected net benefit is
Be ¼ R� Cðnþ 1Þ
lc

� Cð1� iÞ
hc

:

The customer strictly prefers to enter if Be is positive and is indifferent between entering and balking if it equals zero. We
thus conclude the following.

Theorem 3.1. In the fully observable M/M/1 queue with single vacation, there exist thresholds
ðneð0Þ;neð1ÞÞ ¼
Rlc

C
� lc

hc

� �
� 1;

Rlc

C

� �
� 1

� �
; ð2Þ
such that the strategy ’observe (N(t),I(t)), enter if N(t) 6 ne(I(t)) and balk otherwise’ is a unique equilibrium in the class of the
threshold strategies.
Remark 1. ne(0) is the threshold when an arriving customer finds the system is in a vacation period and ne(1) is the thresh-
old when it is in a regular busy period. We get ne(0) and ne(1) from the condition Be > 0 when i = 0 and 1 respectively. The
symbol bc indicates rounding down.

For the stationary analysis, we note that if all customers follow the threshold strategy in (2), the system follows a Markov
chain with state space restricted to Xcfo = {(n, i)j0 6 n 6 ne(i) + 1, i = 0,1} and identical transition rates. The transition rate dia-
gram is depicted in Fig. 1.

The corresponding stationary distribution {p(n,i)j(n,i) 2Xcfo} is obtained as the unique positive normalized solution of the
following system of balance equations.
pð0; 0Þðkþ hcÞ ¼ pð1; 1Þlc; ð3Þ
pðn;0Þðkþ hcÞ ¼ pðn� 1; 0Þk; n ¼ 1; 2; . . . ; neð0Þ; ð4Þ
pðneð0Þ þ 1; 0Þhc ¼ pðneð0Þ; 0Þk; ð5Þ
pð0; 1Þk ¼ pð0; 0Þhc; ð6Þ
pðn; 1Þðkþ lcÞ ¼ pðn� 1; 1Þkþ pðn; 0Þhc þ pðnþ 1; 1Þlc; n ¼ 1; 2; � � � ; neð0Þ þ 1; ð7Þ
pðn; 1Þðkþ lcÞ ¼ pðn� 1; 1Þkþ pðnþ 1; 1Þlc; n ¼ neð0Þ þ 2; � � � ; neð1Þ; ð8Þ
pðneð1Þ þ 1; 1Þlc ¼ pðneð1Þ; 1Þk: ð9Þ
Define q ¼ k
lc
; r ¼ k

kþhc
.

By iterating (4) and (8), taking into account (3), (5) and (9), we obtain
pðn; 0Þ ¼ lc

kþ hc
rnpð1; 1Þ; n ¼ 1; 2; � � � ; neð0Þ; ð10Þ

pðneð0Þ þ 1; 0Þ ¼ k
hc

lc

kþ hc
rneð0Þpð1; 1Þ; ð11Þ

pðn; 1Þ ¼ qn�neð0Þ�1pðneð0Þ þ 1; 1Þ; n ¼ neð0Þ þ 2; � � � ; neð1Þ þ 1: ð12Þ
From (7) we observe that {p(n,1)jn = 1,2, � � �,ne(0) + 1} is a solution of the nonhomogeneous linear difference equation
with constant coefficients
lcxnþ1 � ðkþ lcÞxn þ kxn�1 ¼ �hcpðn;0Þ ¼ � hclc

kþ hc
rnpð1; 1Þ; n ¼ 2; 3; � � � ; neð0Þ; ð13Þ
where the last equation is due to (10). Using the standard approach for solving such equations, we consider the correspond-
ing characteristic equation
lcx2 � ðkþ lcÞxþ k ¼ 0;
which has two roots 1 and q. Then the general solution of the homogeneous version of (13) is xhom
n ¼ A1n þ Bqn (we assume

q – 1). The general solution xgen
n of (13) is given as xgen

n ¼ xhom
n þ xspec

n , where xspec
n is a specific solution of (13). Because the
Fig. 1. Transition rate diagram for the (ne(0),ne(1)) threshold strategy in the fully observable queue under continuous case.
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nonhomogeneous part of (13) is geometric with parameter r, we can find a specific solution Crn (we assume r – q and both
are different from 1). Substituting xspec

n ¼ Crn into (13) we obtain
C ¼ lc

lc � k� hc
pð1; 1Þ: ð14Þ
Hence the general solution of (13) is given as
xgen
n ¼ A1n þ Bqn þ Crn; n ¼ 1; 2; � � � ; neð0Þ þ 1; ð15Þ
where C is given by (14) and A, B are to be determined.
From (15), for n = 1 it follows that
Aþ Bq ¼ lchc � ðkþ hcÞ2

ðkþ hcÞðlc � k� hcÞ
pð1; 1Þ: ð16Þ
Furthermore, substituting (15) into (7) for n = 2 and taking into account (3), (4) and (6), it follows after some rather te-
dious algebra that
Aþ Bq2 þ lc

lc � k� hc

k
kþ hc

� �2

pð1; 1Þ ¼ 1
lc
½ðkþ lcÞpð1; 1Þ � kpð0;1Þ � hcpð1; 0Þ�;
which is equivalent to the form:
Aþ Bq2 ¼ k
lc

lchc � ðkþ hcÞ2

ðkþ hcÞðlc � k� hcÞ
pð1; 1Þ: ð17Þ
Solving (16) and (17), we obtain
A ¼ 0;

B ¼ l2
c hc � lcðkþ hcÞ2

kðkþ hcÞðlc � k� hcÞ
pð1; 1Þ:

8><>:

Then, from (15),
pðn; 1Þ ¼ lchc � ðkþ hcÞ2

ðkþ hcÞðlc � k� hcÞ
qn�1 þ lc

lc � k� hc
rn

" #
pð1; 1Þ; n ¼ 1; 2; � � � ; neð0Þ þ 1: ð18Þ
We have thus expressed all stationary probabilities in terms of p(1,1) in relations see (3), (6), (10)–(12) and (18). The
remaining probability p(1,1) can be found from the normalization equation
Xneð0Þþ1

n¼0

pðn;0Þ þ
Xneð1Þþ1

n¼0

pðn;1Þ ¼ 1:
After some algebraic simplifications, we can express all stationary probabilities in terms of q and r in the following
theorem:

Theorem 3.2. Consider a fully observable M/M/1 queue with single vacation and r – 1 – q – r, in which customers follow the
threshold policy (ne(0), ne(1)) given in Theorem 3.1. The stationary probabilities {pfo(n, i)j(n, i) 2Xcfo} are as follows:
pfoð1; 1Þ ¼ 1
q
þ r2

qð1� rÞ þ
1� qneð1Þþ1

1� q
þ r2ð1� rneð0Þþ1Þ
ðr� qÞð1� rÞ þ

rneð0Þþ2ðq� qneð1Þ�neð0Þþ1Þ � r2ð1� qneð1Þþ1Þ
ðr� qÞð1� qÞ

� ��1

; ð19Þ

pfoðn;0Þ ¼
rnþ1

q
pfoð1; 1Þ; n ¼ 0; 1; 2; � � � ; neð0Þ; ð20Þ

pfoðneð0Þ þ 1; 0Þ ¼ 1
ð1� rÞqrneð0Þþ2pfoð1; 1Þ; ð21Þ

pfoðn; 1Þ ¼ 1
r� q

½ðr� r2 � qÞqn�1 þ rnþ1�pfoð1; 1Þ; n ¼ 0; 1; 2; � � � ; neð0Þ þ 1; ð22Þ

pfoðn; 1Þ ¼ 1
r� q

r� r2 � qþ rq
r
q

� �neð0Þþ1
" #

qn�1pfoð1; 1Þ; n ¼ neð0Þ þ 2; � � � ; neð1Þ þ 1: ð23Þ
Because of the PASTA property, the probability of balking is equal to pfo(ne(0) + 1,0) + pfo(ne(1) + 1,1). In addition, every
customer receives a reward of R units for completing service and there exists a waiting cost of C units per time unit when
the customer remains in the system (in queue or in service). Hence the social benefit per time unit when all customers follow
the threshold policy (ne(0),ne(1)) given in Theorem 3.1 equals
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SBcfo ¼ Rkð1� pfoðneð0Þ þ 1; 0Þ � pfoðneð1Þ þ 1; 1ÞÞ � C
Xneð0Þþ1

n¼0

npfoðn; 0Þ þ
Xneð1Þþ1

n¼0

npfoðn; 1Þ
 !

:

3.2. Almost observable case

Next we consider the almost observable case where arriving customers only know N(t) before making decisions. Hence
the stationary distribution of the corresponding Markov chain is from Theorem 3.2 with ne(0)=ne(1)=ne and state space
Xcao = {nj0 6 n 6 ne + 1} as well as identical transition rates. The transition diagram is depicted in Fig. 2.

Theorem 3.3. Consider an almost observable M/M/1 queue with single vacation and r – 1 – q – r, in which customers follow
threshold policy ne. The stationary probabilities {pao(n)jn 2 Xcao} are as follows:
paoðnÞ ¼ K
rnþ1

q
þ ðr� r2 � qÞqn�1 þ rnþ1

r� q

� �
; n ¼ 0; 1; 2; � � � ; ne;

paoðne þ 1Þ ¼ K
rneþ2

ð1� rÞqþ
ðr� r2 � qÞqne þ rneþ2

r� q

� �
;

where
paoðnÞ ¼ pfoðn; 0Þ þ pfoðn; 1Þ; n ¼ 0; 1; 2; � � � ; ne þ 1;
and
K ¼ 1
q
þ r2

qð1� rÞ þ
r2ð1� rneþ1Þ
ðr� qÞð1� rÞ þ

ðr� r2 � qÞð1� qneþ1Þ
ðr� qÞð1� qÞ

� ��1

:

The mean sojourn time of a customer who finds n customers in the system is
Se ¼ nþ 1
lc
þ

p�IjNð0jnÞ
hc

;

where p�IjNð0jnÞ is the probability that an arriving customer finds the server at state 0, given that there are n customers.
Therefore, if such a customer decides to enter, the expected net benefit is
Be ¼ R� Cðnþ 1Þ
lc

�
Cp�IjNð0jnÞ

hc
: ð24Þ
We get p�IjNð0jnÞ ¼
kpfoðn; 0Þ

kpfoðn; 0Þþkpfoðn; 1Þ
; n ¼ 0; 1; 2; � � � ; ne þ 1. Using the various forms of pfo(n,i) from (19)–(23) we obtain
p�IjNð0jnÞ ¼ 1þ q
r� q

þ 1� r
r
� q

r� q

� �
q
r

� 	n
� ��1

; n ¼ 0; 1; 2; � � � ; ne; ð25Þ

p�IjNð0jne þ 1Þ ¼ 1þ ð1� rÞ q
r� q

þ 1� r
r
� q

r� q

� �
q
r

� 	neþ1
� �� ��1

: ð26Þ
In light of (24)–(26), we introduce the function
f ðn; xÞ ¼ R� Cðnþ 1Þ
lc

� C
hc

1þ x
q

r� q
þ 1� r

r
� q

r� q

� �
q
r

� 	n
� �� ��1

; x 2 ½1� r; 1�; n ¼ 0; 1; 2; � � � ; ð27Þ
which will allow us to prove the existence of equilibrium threshold strategies and derive the corresponding thresholds. Let
fUðnÞ ¼ f ðn; 1Þ ¼ R� Cðnþ 1Þ
lc

� C
hc

1þ q
r� q

þ 1� r
r
� q

r� q

� �
q
r

� 	n
� ��1

; n ¼ 0; 1; 2; � � � ; ð28Þ

fLðnÞ ¼ f ðn; 1� rÞ ¼ R� Cðnþ 1Þ
lc

� C
hc

1þ ð1� rÞ q
r� q

þ 1� r
r
� q

r� q

� �
q
r

� 	n
� �� ��1

; n ¼ 0; 1; 2; � � � ; ð29Þ
Fig. 2. Transition rate diagram for the ne threshold strategy in the almost observable queue under continuous case.
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It is easy to see that
fUð0Þ ¼ f ð0; 1Þ ¼ R� C
lc
� C

hc
r > 0;
and
fLð0Þ ¼ f ð0; 1� rÞ ¼ R� C
lc
� C

hc
1þ ð1� rÞ2

r

" #�1

> 0:
In addition,
lim
n!1

fUðnÞ ¼ lim
n!1

fLðnÞ ¼ �1:
Hence there exists nU such that
fUð0Þ; f Uð1Þ; f Uð2Þ; � � � ; f UðnUÞ > 0 and f UðnU þ 1Þ 6 0: ð30Þ
The function f(n,x) is clearly increasing with respect to x for every fixed n, thus we get the relation fL(n) 6 fU(n), n = 0,1,2, � � �.
In particular, fL(nU + 1) 6 0 while fL(0) > 0. Hence, there exists nL 6 nU such that
fLðnLÞ > 0 and f LðnL þ 1Þ; � � � ; f LðnUÞ; f LðnU þ 1Þ 6 0: ð31Þ
We can now establish the existence of the equilibrium threshold policies in the almost observable case and give the follow-
ing theorem.

Theorem 3.4. In the almost observable M/M/1 queue with single vacation, all pure threshold strategies ’observe N(t), enter if
N(t) 6 ne and balk otherwise’ for ne=nL,nL + 1, � � � ,nU are equilibrium strategies.
Proof. Consider a tagged customer at his arrival instant and assume all other customers follow the same threshold strategy
’observe N(t), enter if N(t) 6 ne and balk otherwise’ for some fixed ne 2 {nL,nL + 1, � � � ,nU}. Then p�IjNð0jnÞ is given by (25), (26).

If the tagged customer finds n 6 ne customers and decides to enter, his expected net benefit is equal to
R� Cðnþ 1Þ
lc

� C
hc

1þ q
r� q

þ 1� r
r
� q

r� q

� �
q
r

� 	n
� ��1

¼ fUðnÞ > 0;
because of (24), (25), (27), (28) and (30). So in this case the customer prefers to enter.
If the tagged customer finds n = ne + 1 customers and decides to enter, his expected net benefit is
R� Cðne þ 2Þ
lc

� C
hc

1þ ð1� rÞ q
r� q

þ 1� r
r
� q

r� q

� �
q
r

� 	neþ1
� �� ��1

¼ fLðne þ 1Þ 6 0;
because of (24), (26), (27), (29) and (31). So in this case the customer prefers to balk. h

Because the probability of balking is equal to pao(ne + 1), the social benefit per time unit when all customers follow the
threshold policy ne given in Theorem 3.4 equals
SBcao ¼ Rkð1� paoðne þ 1ÞÞ � C
Xneþ1

n¼0

npao
ðnÞ

 !
:

4. Analysis of discrete queue

Now we discuss the equilibrium customer behavior in discrete-time queue. Assume that customer arrivals occur at the
end of slot t = n�, n = 0,1, � � �. Inter-arrival times are independent and identical distributed sequences following a geometric
distribution with rate p. The beginning and ending of service occur at slot division point t = n, n = 0,1, � � � . The service times S
and vacation times V are geometrically distributed with rates ld and hd respectively. Thus,
PðT ¼ kÞ ¼ p�pk�1; k P 1; 0 < p < 1; �p ¼ 1� p;

PðS ¼ kÞ ¼ ldld
k�1; k P 1; 0 < ld < 1; ld ¼ 1� ld;

PðV ¼ kÞ ¼ hdhd
k�1; k P 1; 0 < hd < 1; hd ¼ 1� hd:
Let Ln be the number of customers in the system at time n+. According to the assumptions above, a customer who finishes
service and leaves at t = n+ does not reckon on Ln while arrives at t = n� should reckon on Ln. We assume
Jn ¼
0; the system is in a vacation period at time nþ;

1; the system is in a service period at time nþ:
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Parallel to the analysis of continuous queue, we show that there also exist equilibrium threshold strategies for customers.
However, the stationary behaviors of the system are more difficult to acquire than those in the continuous queue. Herein-
after, the subscript d means the discrete-time queue.

4.1. Fully observable case

The arriving customers know both the queue length Ln and the state of the server Jn at arrival instant. Evidently, {(Ln, Jn)j
n P 0} is a discrete-time Markov chain with state space Xdfo = {(k, j)jk P 0,j = 0,1}. The mean sojourn time and expected net
benefit when a customer observes state (k, j) are
Se ¼ kþ 1
ld
þ 1� j

hd
;

Be ¼ R� Cðkþ 1Þ
ld

� Cð1� jÞ
hd

:

The customer strictly prefers to enter if Be is positive and is indifferent between entering and balking if it equals zero, which
is identical to the continuous case. We thus conclude the following theorem.

Theorem 4.1. In the fully observable Geo/Geo/1 queue with single vacation, there exist thresholds
ðLeð0Þ; Leð1ÞÞ ¼
Rld

C
� ld

hd

� �
� 1;

Rld

C

� �
� 1

� �
; ð32Þ
such that the strategy ’observe (Ln, Jn), enter if Ln 6 Le(Jn) and balk otherwise’ is a unique equilibrium in the class of the threshold
strategies.

For the stationary analysis in discrete time, note that if all customers follow the threshold strategy in (32), the system
follows a Markov chain with state space restricted to Xdfo = {(k,0)j0 6 k 6 Le(0) + 1} [ {(k,1)j0 6 k 6 Le(1) + 1}. We show
the transition diagram in Fig. 3. The one-step transition probabilities of (Ln, Jn) are as follows:

Case 1: if Xn = (k,0), 0 6 k 6 Le(0),
Xnþ1 ¼

ðk; 0Þ; with probability hd�p
ðk; 1Þ; with probability hd�p

ðkþ 1; 0Þ; with probability hdp

ðkþ 1; 1Þ; with probability hdp

8>>><>>>:

Case 2: if Xn = (Le(0) + 1,0),
Xnþ1 ¼
ðLeð0Þ þ 1; 0Þ; with probability hd

ðLeð0Þ þ 1; 1Þ; with probability hd

(

Case 3: if Xn = (0, 1),
Xnþ1 ¼
ð0; 1Þ; with probability �p

ð1; 1Þ; with probability p




Case 4: if Xn = (1,1),
Xnþ1 ¼
ð0; 0Þ; with probability �pld

ð1; 1Þ; with probability 1� pld � �pld

ð2; 1Þ; with probability pld

8><>:
Fig. 3. Transition rate diagram for the (Le(0),Le(1)) threshold strategy in the fully observable queue under discrete case.
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Case 5: if Xn = (k,1), 2 6 k 6 Le(1)
Xnþ1 ¼

ðk� 1; 1Þ; with probability �pld

ðk; 1Þ; with probability 1� pld � �pld

ðkþ 1; 1Þ; with probability pld

8>><>>:

Case 6: if Xn = (Le(1) + 1,1),
Xnþ1 ¼
ðLeð1Þ; 1Þ; with probability ld

ðLeð1Þ þ 1; 1Þ; with probability ld:




Based on the one-step transition situation analysis, using the lexicographical sequence for the states, the one-step tran-
sition probability matrix of (Ln, Jn) can be written as
eP ¼

B0 A0

B1 A1 C1

B2 A1 C1

. .
. . .

. . .
.

B2 A1 C1

B2 A2 C2

B3 A3 C3

. .
. . .

. . .
.

B3 A3 C3

B4 A4

2666666666666666666666666664

3777777777777777777777777775

; ð33Þ
where
B0 ¼
hd�p hd�p

0 �p

" #
; A0 ¼

hdp hdp

0 p

" #
;

B1 ¼
0 0

�pld 0

� �
; A1 ¼

hd�p hd�p

0 1� pld � �pld

" #
; C1 ¼

hdp hdp

0 pld

" #
;

B2 ¼
0 0
0 �pld

� �
; A2 ¼

hd hd

0 1� pld � �pld

" #
; C2 ¼

0
pld

� �
and
B3 ¼ �pld; A3 ¼ 1� pld � �pld; C3 ¼ pld; B4 ¼ ld; A4 ¼ ld:
Let (L, J) be the stationary limit of (Ln, Jn) and its distribution is denoted as
pkj ¼ PfL ¼ k; J ¼ jg; ðk; jÞ 2 Xdfo

pk ¼
ðpk0; pk1Þ; 0 6 k 6 Leð0Þ þ 1;
pk1; Leð0Þ þ 2 6 k 6 Leð1Þ þ 1



p ¼ ðp0; p1; � � � ; pLeð1Þþ1Þ:
We solve for the stationary distribution pkj by noting that the vector p satisfies the equation peP ¼ p and have the following
system of steady-state equations:
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p00 ¼ hd�pp00 þ �pldp11; ð34Þ
p10 ¼ hdpp00 þ hd�pp10; ð35Þ
pk0 ¼ hdppk�1; 0 þ hd�ppk0; k ¼ 2;3; � � � ; Leð0Þ; ð36Þ
pLeð0Þþ1; 0 ¼ hdppLeð0Þ;0 þ hdpLeð0Þþ1; 0; ð37Þ
p01 ¼ hd�pp00 þ �pp01; ð38Þ
p11 ¼ hdpp00 þ pp01 þ hd�pp10 þ ð1� pld � �pldÞp11 þ �pldp21; ð39Þ
pk1 ¼ hdppk�1; 0 þ pldpk�1; 1 þ hd�ppk0 þ ð1� pld � �pldÞpk1 þ �pldpkþ1; 1; k ¼ 2; 3; � � � ; Leð0Þ; ð40Þ
pLeð0Þþ1; 1 ¼ hdppLeð0Þ;0 þ pldpLeð0Þ;1 þ hdpLeð0Þþ1; 0 þ ð1� pld � �pldÞpLeð0Þþ1; 1 þ �pldpLeð0Þþ2; 1; ð41Þ
pk1 ¼ pldpk�1; 1 þ ð1� pld � �pldÞpk1 þ �pldpkþ1; 1; k ¼ Leð0Þ þ 2; � � � ; Leð1Þ � 1; ð42Þ
pLeð1Þ; 1 ¼ pldpLeð1Þ�1; 1 þ ð1� pld � �pldÞpLeð1Þ; 1 þ ldpLeð1Þþ1; 1; ð43Þ
pLeð1Þþ1; 1 ¼ pldpLeð1Þ;1 þ ldpLeð1Þþ1; 1: ð44Þ
Define
a ¼ pld

�pld
; b ¼ hdp

1� hd�p
:

By iterating (36) and (42), taking into account (35), (37), (43) and (44), we obtain
pk0 ¼ bkp00; k ¼ 1; 2; � � � ; Leð0Þ ð45Þ

pLeð0Þþ1; 0 ¼
1� hd�p

hd
bLeð0Þþ1p00; ð46Þ

pk1 ¼ ak�Leð0Þ�1pLeð0Þþ1; 1; k ¼ Leð0Þ þ 2; � � � ; Leð1Þ; ð47Þ
pLeð1Þþ1; 1 ¼ �paLeð1Þ�Leð0ÞpLeð0Þþ1; 1: ð48Þ
From (40) we observe that {pk1jk = 1,2, � � � ,Le(0) + 1} is a solution of the nonhomogeneous linear difference equation with
constant coefficients
�pldxkþ1 � ðpld þ �pldÞxk þ pldxk�1 ¼ �hdppk�1; 0 � hd�ppk0 ¼ �
hd

hd
bkp00; k ¼ 2; 3; � � � ; Leð0Þ; ð49Þ
where the last equation is due to (45). We consider the corresponding characteristic equation
�pldx2 � ðpld þ �pldÞxþ pld ¼ 0;
which has two roots at 1 and a. Then the general solution of the homogeneous version of (49) is xhom
k ¼ D1k þ Eak (we assume

a – 1). The general solution xgen
k of (49) is given as xgen

k ¼ xhom
k þ xspec

k , where xspec
k is a specific solution of (49). Because the non-

homogeneous part of (49) is geometric with parameter b, we can find a specific solution Fbk (we assume b – a and both are
different from 1). Substituting xgen

k ¼ Fbk into (49) we obtain
F ¼ 1� hd�p
hd�p� ld

p00: ð50Þ
Hence the general solution of (49) is given as
xgen
k ¼ D1k þ Eak þ Fbk; k ¼ 1; 2; � � � ; Leð0Þ þ 1; ð51Þ
where F is given by (50) and D, E are to be determined.
From (51) for k = 1, we obtain
Dþ Eaþ Fb ¼ 1� hd�p
�pld

p00: ð52Þ
Furthermore, substituting (51) into (39) for k = 2, it follows after some rather tedious algebra that
Dþ Ea2 þ Fb2 ¼ ðpld þ �pldÞð1� hd�pÞ2 � �pldhdð1� hd�p2Þ
ð�pldÞ

2ð1� hd�pÞ
p00: ð53Þ
Solving (52) and (53), we obtain
D ¼ 0;
E ¼ Gp00;

G ¼ ldhdhd
2�p2ðld � �p� p�phd þ 2pÞ þ ldhdhd�pðp2ld þ 2ld � 3pÞ þ ldh

2
dhd�p2ð1� pld � hd�p2Þ þ ldhdðp� ldÞ

pldhdð�phd � ldÞð�phd � 1Þðp� ldÞ
:

8>>><>>>:
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Then, from (51),
pk1 ¼ Gak þ 1� hd�p
hd�p� ld

bk

 !
p00; k ¼ 1; 2; � � � ; Leð0Þ þ 1: ð54Þ
We have thus expressed all stationary probabilities in terms of p00 in relations see (38), 45,46,47,48 and (54). The remaining
probability p00 can be found from the normalization equation
XLeð0Þþ1

k¼0

pk0 þ
XLeð1Þþ1

k¼0

pk1 ¼ 1:
After some algebraic simplification, we can express all stationary probabilities in the following theorem.

Theorem 4.2. Consider a fully observable Geo/Geo/1 queue with single vacation and b – 1 – a – b, in which customers follow the
threshold policy (Le(0),Le(1)) given in Theorem 4.1. The stationary probabilities {pkjj(k, j) 2Xdfo} are as follows:
p00 ¼
1� hd�p

hd
þ hd�p

p
þ G

pld

ld � p
� p�p

ld � p
aLeð1Þþ1

� �


þ 1� hd�p
hd�p� ld

hdp
hd
� hdp

hd
� pld

ld � p
þ p�p

ld � p
aLeð1Þ�Leð0Þ

� �
bLeð0Þþ1

� �)�1

; ð55Þ

pk0 ¼ bkp00; k ¼ 1; 2; � � � ; Leð0Þ; ð56Þ

pLeð0Þþ1; 0 ¼
bLeð0Þþ1

1� b
p00; ð57Þ

p01 ¼
hd�p
p

p00; ð58Þ

pk1 ¼ Gak þ 1� hd�p
hd�p� ld

bk

 !
p00; k ¼ 1; 2; � � � ; Leð0Þ þ 1; ð59Þ

pk1 ¼ Gak þ 1� hd�p
hd�p� ld

ak�Leð0Þ�1bLeð0Þþ1

 !
p00; k ¼ Leð0Þ þ 2; � � � ; Leð1Þ; ð60Þ

pLeð1Þþ1; 1 ¼ �p GaLeð1Þþ1 þ 1� hd�p
hd�p� ld

aLeð1Þ�Leð0ÞbLeð0Þþ1

 !
p00; ð61Þ
where
a ¼ pld

�pld
; b ¼ hdp

1� hd�p
;

G ¼ ldhdhd
2�p2ðld � �p� p�phd þ 2pÞ þ ldhdhd�pðp2ld þ 2ld � 3pÞ þ ldh

2
dhd�p2ð1� pld � hd�p2Þ þ ldhdðp� ldÞ

pldhdð�phd � ldÞð�phd � 1Þðp� ldÞ
:

Because of the PASTA property, the probability of balking is equal to pLeð0Þþ1; 0 þ pLeð1Þþ1; 1. In addition, every customer re-
ceives a reward of R units for completing service and there exists a waiting cost of C units per time unit when the customer
remains in the system (in queue or in service). Hence the social benefit per time unit when all customers follow the threshold
policy (Le(0),Le(1)) given in Theorem 4.1 equals
SBdfo ¼ Rpð1� pLeð0Þþ1; 0 � pLeð1Þþ1; 1Þ � C
XLeð0Þþ1

k¼0

kpk0 þ
XLeð1Þþ1

k¼0

kpk1

 !
:

4.2. Almost observable case

Finally we focus on the almost observable case, where arriving customers only observe the queue length at their arriving
instant. Similar to the discussion in the case of continuous-time queue, the stationary distribution of the corresponding Mar-
kov chain is from Theorem 4.2 with Le(0) = Le(1) = Le and state space Xdao={kj0 6 k 6 Le + 1}. The transition diagram is de-
picted in Fig. 4.

Theorem 4.3. Consider an almost observable Geo/Geo/1 queue with the single vacation and b – 1 – a – b, in which customers
follow the threshold policy Le. The stationary probabilities p0kjk 2 Xdao

� �
are as follows:



Fig. 4. Transition rate diagram for the Le threshold strategy in the almost observable queue under discrete case.
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p00 ¼ K 0 1þ hd�p
p

� �
;

p0k ¼ K 0 Gak þ ld

hd�p� ld

bk

 !
; k ¼ 1; 2; � � � ; Le;

p0Leþ1 ¼ K 0 �pGaLeþ1 þ �p
1� hd�p
hd�p� ld

þ 1� hd�p
hd

 !
bLeþ1

" #
;

where p0k ¼ pk0 þ pk1; k ¼ 0; 1; � � � ; Le þ 1, G is the same in Theorem 4.2 and
K 0 ¼ 1þ hd�p
hd
þ lhdp

hdðhd�p� lÞ
þ G

pld

ld � p
� p�p

ld � p
aLeþ1

� �
þ 1� hd�p

hd�p� ld

� p
hd

bLeþ1
� �" #�1

: �
The following analysis is similar with the almost observable case in continuous queue. Because the expected net benefit of a
customer who finds k customers in the system, if he decides to enter, is
Be ¼ R� Cðkþ 1Þ
ld

�
Cp�JjLð0jkÞ

hd
; ð62Þ
where p�JjLð0jkÞ is the probability that an arriving customer finds the server in a vacation time, given that there are k custom-
ers. Using the various forms of pkj from (55)–(61), we get
p�JjLð0j0Þ ¼
pp00

pp00þpp01
¼ 1þ hd �p

p

� 	�1
;

p�JjLð0jkÞ ¼
ppk0

ppk0þppk1
¼ 1þ hd �p

pld
� 1�hd �p

hd �p�ld

� 	
a
b

� 	k
þ 1�hd �p

hd �p�ld

� ��1

; k ¼ 1; 2; � � � ; Le;

p�JjLð0jLe þ 1Þ ¼ 1þ ð1� bÞ�p hd �p
pld
� 1�hd �p

hd �p�ld

� 	
a
b

� 	Leþ1
þ 1�hd �p

hd �p�ld

� �
 �1

:

8>>>>>>><>>>>>>>:
ð63Þ
In light of (62), (63), we introduce the function
gðk; yÞ ¼ R� Cðkþ 1Þ
ld

� C
hd

1þ y
hd�p
pld
� 1� hd�p

hd�p� ld

 !
a
b

� �k

þ 1� hd�p
hd�p� ld

" #( )�1

;

y 2 ½ð1� bÞ�p; 1�; k ¼ 0; 1; 2; � � � ; ð64Þ
which will allow us to prove the existence of equilibrium threshold strategies and derive the corresponding thresholds. Let
gUðkÞ ¼ gðk;1Þ ¼ R� Cðkþ 1Þ
ld

� C
hd

1þ hd�p
pld
� 1� hd�p

hd�p� ld

 !
a
b

� �k

þ 1� hd�p
hd�p� ld

" #�1

; k ¼ 0; 1; 2; � � � ; ð65Þ

gLðkÞ ¼ gðk; ð1� bÞ�pÞ ¼ R� Cðkþ 1Þ
ld

� C
hd

1þ ð1� bÞ�p hd�p
pld
� 1� hd�p

hd�p� ld

 !
a
b

� �k

þ 1� hd�p
hd�p� ld

" #( )�1

; k ¼ 0;1;2 � � �

ð66Þ
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Fig. 5. Equilibrium thresholds for the fully observable and almost observable systems. The three figures on the left are in continuous case. Sensitivity with
respect to: a1. k, for l = 1, hc = 0.05, C = 1, R = 25; b1. hc, for k = 0.8, l = 1, C = 1, R = 20; c1. R, for k = 0.4, l = 0.9, hc = 0.05, C = 1. The three figures on the right are
in discrete case. Sensitivity with respect to: a2. p, for l = 0.7, hd = 0.05, C = 1, R = 40; b2. hd, for l = 0.2, p = 0.6,C = 1, R = 30;c2. R, for p = 0.4, l = 0.9,hd = 0.05,
C = 1.
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It is easy to see that
gUð0Þ ¼ R� C
ld
� C

hd
1þ hd�p

pld

� ��1

> 0
and
gLð0Þ ¼ R� C
ld
� C

hd
1þ ð1� bÞ�p hd�p

pld

� ��1

> 0:
In addition,
lim
k!1

gUðkÞ ¼ lim
k!1

gLðkÞ ¼ �1
Hence there exists kU such that
gUð0Þ; gUð1Þ; gUð2Þ; � � � ; gUðkUÞ > 0 and gUðkU þ 1Þ 6 0: ð67Þ
The function g(k,y) is clearly increasing with respect to y for every fixed k, thus we get the relation gL(k) 6 gU(k),
k = 0,1,2, � � �. In particular, gL(kU + 1) 6 0 while gL(0) > 0. Hence, there exists kL 6 kU such that
gLðkLÞ > 0 and gLðkL þ 1Þ; � � � ; gLðkUÞ; gLðkU þ 1Þ 6 0: ð68Þ
We can now establish the existence of the equilibrium threshold policies in the almost observable case and give the follow-
ing theorem.

Theorem 4.4. In the almost observable Geo/Geo/1 queue with single vacation, all pure threshold strategies ’observe Ln, enter if
Ln 6 Le and balk otherwise’ for Le=kL,kL + 1, � � � , kU are equilibrium strategies.
Proof. Consider a tagged customer at his arrival instant and assume all other customers follow the same threshold strategy
’observe Ln, enter if Ln 6 Le and balk otherwise ’ for some fixed Le 2 {kL,kL + 1, � � � ,kU}. Then p�JjLð0jkÞ is given by (63).

If the tagged customer finds k 6 Le customers and decides to enter, his expected net benefit is equal to
R� Cðkþ 1Þ
ld

� C
hd

1þ hd�p
pld
� 1� hd�p

hd�p� ld

 !
a
b

� �k

þ 1� hd�p
hd�p� ld

" #�1

¼ gUðkÞ > 0
because of (62),(63),(64),(65) and (67). So in this case the customer prefers to enter.
If the tagged customer finds k = Le + 1 customers and decides to enter, his expected net benefit is
R� CðLe þ 2Þ
ld

� C
hd

1þ ð1� bÞ�p hd�p
pld
� 1� hd�p

hd�p� ld

 !
a
b

� �Leþ1

þ 1� hd�p
hd�p� ld

" #( )�1

¼ gLðLe þ 1Þ 6 0
because of (62),(63),(64), (66) and (68). Therefore in this case the customer prefers to balk. h
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Fig. 6. Equilibrium social benefit in continuous case. Sensitivity with respect to k, for l = 1.5, hc = 0.8, C = 1, R = 40.
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Because the probability of balking is equal to p0Leþ1, the social benefit per time unit when all customers follow the thresh-
old policy Le given in Theorem 4.4 equals
SBdao ¼ Rp 1� p0Leþ1

� �
� C

XLeþ1

k¼0

kp0k

 !
:

5. Numerical experiments

In this section, according to the results obtained, we present a set of numerical experiments. Here we concern about the
values of the equilibrium thresholds and the social benefits per unit time in both the continuous-time queue and discrete-
time queue. We illustrate the effect of the information level as well as several parameters on the equilibrium thresholds and
the social benefits.

In Fig. 5 we observe the effect of the information level on the equilibrium thresholds and explore the sensitivity of the
equilibrium thresholds with respect to k, p, h and R. It shows that in all of six diagrams the equilibrium thresholds {nL, � � � ,nU}
and {kL, � � � ,kU} for the almost observable case always locate respectively in (ne(0),ne(1)) and (Le(0),Le(1)) for the fully obser-
vable case. In other words, no matter in continuous case or discrete case, the thresholds in the almost observable model have
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Fig. 8. Equilibrium social benefit in continuous case. Sensitivity with respect to hc, for k = 0.8, l = 1, C = 1, R = 25.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120
Equilibrium Social Benefit

p

 

 

F.O.
A.O.k

U

A.O.k
L
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intermediate values between the two separate thresholds when the arriving customers are informed of the state of the ser-
ver. This property is also held for the models with multiple vacations or interruptible setup/closedown times (see references
[10] and [12]).

Concerning the sensitivity of the equilibrium thresholds, we can make the following observations. Comparing the figures
in continuous case with discrete case in Fig. 5, we find that the curves have the same shape and trend. Under varying arrival
rate the fully observable thresholds remain fixed since the arrival rate is irrelevant to the customer’s decision when he has
full state information. On the other hand, the almost observable thresholds increase with the arrival rate, which means that if
an arriving customer is told the information of the present queue length, then he is more likely to enter when the arrival rate
is higher. This phenomenon that customers in equilibrium tend to imitate the behaviors of other customers in the almost
observable model is of the ’Follow-The-Crowd’ (FTC) type. The reason is that when the arrival rate is high, it is probably that
the server is active, therefore the expected delay from server vacation is reduced. However, the vacation rate varies, all
thresholds increase, expect that the equilibrium threshold of the server being working remains constant. Evidently, this is
intuitive, because when the server vacation gets shorter, customers generally have a greater incentive to enter both in
the fully and almost observable models. Finally, along with the rising of the service reward R, the thresholds increase in a
linear fashion. In addition, the values of R are identical when the parameters are as the same in continuous case as in discrete
case. It is easy to explain, because the continuous-time model can be looked as the limit of the discrete-time model.
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Fig. 10. Equilibrium social benefit in continuous case. Sensitivity with respect to R, for k = 0.8, l = 1; hc = 0.1, C = 1.
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Fig. 9. Equilibrium social benefit in discrete case. Sensitivity with respect to hd, for p = 0.5, l = 0.9, C = 0.1, R = 100.
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Furthermore, we consider the social benefits for the fully and almost observable cases under the corresponding equilib-
rium strategies in both the continuous case and discrete case. The results are presented in Figs. 6–11. In the almost obser-
vable case, we have seen that there are multiple equilibrium strategies corresponding to thresholds {nL, � � � ,nU} in continuous
model or thresholds {kL, � � � ,kU} in discrete model. For this reason we only present the social benefits under the two extreme
thresholds. In figures we observe that the curves in continuous case have roughly the same trend as in discrete case. The
difference in equilibrium social benefit is almost invisible between the fully and almost observable case, especially in
Fig. 11 where the three pieces of curves nearly overlap each other. Moreover, Fig. 7 shows that in discrete model the equi-
librium social benefit in the fully observable case is bigger than that in the almost observable extreme cases. However, in
Fig. 10 the equilibrium social benefit in the fully observable case has an intermediate value between the social benefits under
the two extreme thresholds. Even in Figs. 6 and 9, some certain values of the social benefit in the fully observable case are
smaller than the other two values in the almost observable case. Thus, it may be argued that the additional information on
the server state is not always helpful for increasing equilibrium social benefit.

As to the sensitivity of the equilibrium social benefit, we find that it increases with respect to the vacation rate and service
reward R, both of which are intuitive. Regarding the arrival rate, regardless of whether in continuous case or discrete case, the
social benefit achieves a maximum for intermediate values. This can be explained that when the arrival rate is small the system
is rarely crowded, therefore customers can be served soon and the social benefit improves. However, with the increasing of the
arrival rate, a smaller percentage tends to enter because of the longer delays, which bring negative effect to the social benefit.

6. Conclusion

In this paper we studied the equilibrium customer behavior in observable M/M/1 and Geo/Geo/1 queueing systems under
single vacation policy. To the best of the authors’ knowledge, this is the first time analyzing the queueing system with single
vacation from an economic perspective. Customers have the right to decide whether to join or to balk according to the accu-
rate situation, which is more sensible than the classical viewpoint that the decisions are made by the servers and the cus-
tomers are forced to follow them. In observable models, customers are informed of the queue length at arriving instant. We
classified two subcases: fully observable and almost observable, depending on the additional information, or lack thereof, the
state of the server. The equilibrium strategies and resulting stationary system behavior were explored from continuous and
discrete perspective and we comparatively analyzed the results of both. Moreover, we discussed the effect of the information
level as well as several parameters on the equilibrium thresholds and social benefit.

The study could offer the customers with optimal strategies to reduce the loss of queueing. Besides, the results could pro-
vide reference information on the pricing issues in queueing systems. Further extensions would be researched about the
equilibrium customer strategies in unobservable models. Furthermore, we can also explore equilibrium behavior under
working vacation policy.
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