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a b s t r a c t

This paper analyzes a discrete-time batch arrival queue with working vacations. In a
GeoX/G/1 system, the server works at a lower speed during the vacation period which
becomes a lower speed operation period. This model is more appropriate for the commu-
nication systemswith the transmit units arrived in batches.We formulate the system as an
embeddedMarkov chain at the departure epoch and by theM/G/1-typematrix analytic ap-
proach, we derive the probability generating function (PGF) of the stationary queue length.
Then, we obtain the distribution for the number of the customers at the busy period initia-
tion epoch, and use the stochastic decomposition technique to present another equivalent
PGF of the queue length. We also develop a variety of stationary performancemeasures for
this system. Some special models and numerical results are presented. Finally, a real-world
example in an Ethernet Passive Optical Network (EPON) is provided.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Discrete timequeueswith vacations have beenwidely studied in recent years bymany researchers because these systems
are more appropriate than their continuous-time counterparts for modeling computer and telecommunication systems
since the basic units in these systems are digital such as amachine cycle time, bits and packets, etc. Some references are given
by Doshi [1,2], and an excellent and complete study on discrete-time queueing systems with vacations has been presented
by Takagi [3] who gave the analysis of Geo/G/1-type queues (including batch arrivals) with different vacation policies. In
recent years, Tian and Zhang [4] and Zhang and Tian [20] studied the Geo/G/1 queues with multiple adaptive vacations. The
batch arrival discrete-time GeoX/G/1 queue under multiple vacations governed by a geometrically distributed timer was
analyzed by Fiems and Bruneel [5]. Recently, Chang and Choi [6] analyzed a single-server batch arrival bulk-service queue
where customers are served in batches of random size and the server takesmultiple vacationswhenever the queue is empty.
Samanta et al. [7] presented the discrete-time GeoX/Geo(a,b)/1/N queues with batch arrival and bulk-service under single
andmultiple vacation policies. In all these references, it is assumed that the server cannot take service during the vacations.
In this paper, wewill consider a batch arrival Geo/G/1 systemwithworking vacations.Working vacation (WV) policywas

introduced by Servi and Finn [8] and the server works at a different rate rather than completely stopping service during the
vacation period. In this case, the vacation period becomes the lower speed operation period of the queueing system. Servi
and Finn [8] analyzed anM/M/1/ queuewith working vacations, denoted asM/M/1/WV, andmodeled a wavelength division
multiplexing (WDM) optical access network using multiple wavelengths which can be reconfigured. Subsequently, Wu and
Takagi [9] generalized results in [8] to anM/G/1 queuewithworking vacations. Baba [10] and Banik et al. [11] presented two
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types of GI/M/1 queueswithworking vacations. Liu et al. [12] gave the stochastic decomposition structure in theM/M/1/WV,
which also exists in the queues with general vacations. Li and Tian [13–15] analyzed a discrete-time Geo/Geo/1 and two
types of GI/Geo/1 queues with working vacations, respectively. So far, only three literatures concentrated on the discrete-
time working vacation queues, and especially, there was no attempt on the Geo/G/1-type working vacation queues and no
uniform methods and results are established.
Thus, we will generalize the analysis of classic and working vacation queues in other literatures to a discrete-time batch

arrival Geo/G/1 queue with working vacations. In fact, the working vacation policy is more general than the classical one in
the sense that, if the service rate during the vacation period becomes zero, the classic vacation policies are the special cases
of the working vacation policies. In practice, there are many real-world systems that fit this model. Under the assumption,
messageswhich are transmitted could consist of a randomnumber of packets. If, upon arrival, the channel is free, one packet
is randomly chosen to be transmitted and the rest of themarewaiting for transmission; otherwise, if the channel is occupied,
all the packets wait for transmission andwill try the retransmission after a random period of time. If there are less messages
in the channel, part of the transmission ability is stored, and the packet will be transmitted slowly and it saves the cost
and operation ability in the system. On the other hand, if more messages arrive, the transmission ability can be released
completely and the packet can be transmitted quickly.
In this paper,wemainly apply theM/G/1-typematrix analytic approachdevelopedbyNeuts [16]. By thismethod, amatrix

G , as a minimal nonnegative solution of a matrix equation, plays an important role. In this paper, we can get the precise
analytic expression for G since the coefficient matrices of the equation are upper triangular. Furthermore, based on this
result and the stochastic decomposition theory in [17], we can obtain two equivalent probability generating functions(PGFs)
of the stationary queue length at the departure epoch, one of which has the evident relationship with the result in the
GeoX/G/1 queue with regular(non-working) vacations. Meanwhile, we show that the probabilities of the server’s state and
the probabilities that an arbitrary customer is served by the normal or working vacation service rate can be computed. We
carry on the complete analysis of the stationary indices in the system and derive the PGF of the number of the customers at
the busy period initiation epoch and the computation formulas of the expected sojourn time.
Compared to the other literatures in this field, especially Refs. [12–15], the contributions of the present paper, in our

opinion, are both theoretical and practical. First, we carry on the research on the model by a method which is different
from those used in other literatures. As we all know, the different-type queueing models always have the different analytic
methods. For the continuous-time and discrete-time GI/M/1-type models, including the M/M/1 ones, the Matrix Geometric
Solution (MGS) method is very powerful in deriving the stationary distributions of the queue length and waiting time, and
the details can be seen in Refs. [12–15]. But this method is not helpful in analyzing the M/G/1-type models and other
approaches must be found. We innovate to apply the connection of the M/G/1-type matrix analytic approach and the
stochastic decompositionmethod to solve the batch-arrival M/G/1-typemodel in this paper. Thus, our work is very different
from the other publications both in themodels and in the analysis method. In a view, this analyzing process can be extended
to the other relevant queueing models, such as the Markov arrival process (MAP) models and Phase-type (PH) vacation
models. Secondly, we revisit and extend the M/G/1-type matrix analytic approach in [16]. It follows from the results in
[16] that there is no direct numerical expression for G in general M/G/1-type matrices, which can only be approximated
by some numerical approximations. But, the fact that an evident expression for the matrix G exists in this queue will make
the analysis in this paper more specific and interesting. The third contribution in this paper comes from the analysis of the
sojourn time and stochastic decomposition property, because as far as we know, until now, no literatures were involved in
these system indices in discrete-time Geo/G/1 working vacation queues. Finally, our theoretical results have the potential
to add the support and necessary ground for performance evaluation in practical problems. A real example in Section 7 will
verify our opinion.
The remainder of the paper is structured as follows. In Section 2, the model of GeoX/G/1/WV is formulated, and we

establish an embedded Markov chain and obtain the matrix G . In Section 3, by Markov stationary equations, we obtain a
some complicated expression for the PGF of the queue length. In Section 4, using the stochastic decomposition theory, we
get a more concise expression for the PGF and the analysis of the sojourn time is also processed. The corresponding indices
in two special models are presented in Section 5. The numerical discussion of the stationary probabilities is postponed to
Section 6. The performance analysis of an Ethernet Passive Optical Network (EPON) is presented in Section 7.

2. Model formulation and embedded Markov chain

We consider a single-server discrete-time queue where the time axis is divided into equal intervals (called slots). It is
assumed that all queueing activities (arrivals, departures and vacations) occur at the slot boundaries and therefore they
may occur at the same time. For mathematical convenience, we will suppose that the departures occur at the moment
immediately before the slot boundaries, whereas arrivals occur at the moment immediately after the slot boundaries. Thus,
we will discuss the model for the early arrival system (EAS) policy. Details on the EAS discipline and related concepts can be
found in [18].
Batches of customers arrive at the system according to a geometrical processwith probability p (0 < p < 1). The number

of individual external customers arriving in each batch is k ≥ 1 with probability χk, and we denote by E(X) and X(z) the
mean and PGF of the sequences {χk}∞k=1, respectively. The service time during the normal busy period is an independent and
identically distributed random variable Sb which follows a general distribution {b

(1)
k }
∞

k=1 with the PGF F(z) and mean E(Sb).
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If at any time any customer arrives, he goes to the service facility for service. Arriving customers are queued according to
the first-come, first-served (FCFS) discipline. The server can serve only one customer at a time. The server begins a working
vacation each time whenever the queue becomes empty and if there are customers arriving during a vacation period, the
server continues to work at a lower rate. The service time Sv during the vacation period also follows a general distribution
{b(2)k }

∞

k=1 with the PGF G(z) and mean E(Sv).
Theworking vacation period is an operation period in a lower speed, and the vacation time V is geometrically distributed

with rate θ (0 < θ < 1), i.e.,

P{V = k} = θ(1− θ)k−1, k ≥ 1.

If no customers are found in the queue when the server returns from the vacation, he again leaves for another vacation with
the same length. This pattern continues until he returns from a vacation to find at least one customer waiting in the queue.
We denote this model by GeoX/G/1/WV.
Let Ln be the number of the customers at the nth service completion or customer departure instant. In the working

vacation model, any service completion may occur during a service period or a working vacation period. Define

Jn =
{
0, after the nth departure, the system stays in a working vacation period,
1, after the nth departure, the system stays in a service period.

Then, the process {(Ln, Jn), n ≥ 1} is a two-dimensional embedded Markov chain with the state space:

Ω =

{
(k, 0), k ≥ 0

}⋃{
(k, 1), k ≥ 1

}
.

Ax denotes the number of the batches arriving during the random length x; thenwe introduce three probability notations:

ak = P{ASb = k} =
∞∑

j=max(1,k)

b(1)j

(
j
k

)
pkpj−k, p = 1− p, k ≥ 0;

bk = P{ASv = k, V > Sv} =
∞∑

j=max(1,k)

b(2)j

(
j
k

)
pkpj−kθ

j
, θ = 1− θ, k ≥ 0;

vk = P{AV = k, V ≤ Sv} =
∞∑

j=k+1

∞∑
n=j

b(2)n

(
j− 1
k

)
pkpj−1−kθ

j−1
θ, k ≥ 0,

where ak represents the probability that there are k batches arriving during Sb (regular service time), bk represents the
probability that V > Sv and k batches arrive during Sv (vacation service time), and vk represents the probability that V ≤ Sv
and k batches arrive during V (vacation time).
Assume that αj, j = 0, 1, . . ., is the probability that j customers arrive during Sb. Because one batch includes n customers

with probability χn, n = 1, 2, . . . , we have the following relationship:

αj =

j∑
k=0

akχ
(k)
j , j = 0, 1, . . . , (1)

where χ (k)j is the probability that j (j ≥ k) customers arrive in k batches and is the k-fold convolution of χj, and χ
(0)
0 = 1.

Now define z as the function variable, and then derive the PGF of {αj}∞j=0,

α(z) =
∞∑
j=0

αjz j =
∞∑
k=0

ak
∞∑
j=k

χ
(k)
j z

j
=

∞∑
k=0

ak[X(z)]k

= A(X(z)) = F [1− p(1− X(z))],

where A(z) =
∑
∞

k=0 akz
k
= F [1− p(1− z)].

Furthermore, assume that βj, j = 0, 1, . . . is the probability that the vacation time V is longer than Sv , i.e., V > Sv , and j
customers arrive during Sv , and

βj =

j∑
k=0

bkχ
(k)
j , j = 0, 1, . . . . (2)

Now multiplying (2) by appropriate powers of z and then taking summation over all possible values of j, we obtain

β(z) =
∞∑
j=0

βjz j =
∞∑
k=0

bk[X(z)]k = B(X(z))

= G[(1− θ)(1− p(1− X(z)))],

where B(z) =
∑
∞

k=0 bkz
k
= G[(1− θ)(1− p(1− z))].
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Similarly, νj, j = 0, 1 . . . is the probability that V ≤ Sv and j customers arrive during the vacation time V , and

νj =

j∑
k=0

vkχ
(k)
j , j = 0, 1, . . . . (3)

Multiplying (3) by appropriate powers of z and then taking summation over all possible values of j, we obtain

ν(z) =
∞∑
j=0

νjz j =
∞∑
k=0

vk[X(z)]k = V (X(z))

=
θ(1− β(z))

1− (1− θ)(1− p(1− X(z)))
,

where

V (z) =
∞∑
k=0

vkzk =
θ(1− B(z))

1− (1− θ)(1− λ(1− z))
.

Evidently,
∞∑
j=0

βj = G(1− θ),
∞∑
j=0

νj = 1− G(1− θ).

Thus, {βj, j ≥ 0} and {νj, j ≥ 0} are two non-complete probability distributions.
Let ζk =

∑k
j=0 νjαk−j, k ≥ 0; then ζk represents the probability that the vacation time V is not longer than the vacation

service time Sv and k customers arrive during V plus Sb. Then,
∞∑
k=0

ζk = 1− G(1− θ), ζ (z) =
∞∑
k=0

ζkzk = ν(z)α(z).

With the assumptions above, we consider the one-step transition probabilities of (Ln, Jn).
Case 1: If Xn = (m, 1),m ≥ 1:

Xn+1 =

{
(m− 1+ j, 1) with probability αj, m ≥ 2, j ≥ 0;
(j, 1) with probability αj, m = 1, j ≥ 1;
(0, 0) with probability α0, m = 1.

Case 2: if Xn = (m, 0),m ≥ 2:

Xn+1 =
{
(m− 1+ j, 0) with probability βj, j ≥ 0;
(m− 1+ j, 1) with probability ζj, j ≥ 0.

Case 3: if Xn = (m, 0),m = 1, 0:

Xn+1 =

{
(j, 0) with probability βj, j ≥ 1;
(j, 1) with probability ζj, j ≥ 1;
(0, 0) with probability β0 + ζ0.

Based on one-step transition situation analysis, using the lexicographical sequence for the states, the one-step transition
probability matrix of (Ln, Jn) can be written as the Block–Jacobi matrix

P̃ =


B0 B1 B2 B3 · · ·
C0 A1 A2 A3 · · ·

A0 A1 A2 · · ·
A0 A1 · · ·

...
...

 , (4)

where

B0 = β0 + ζ0; Bi = (βi, ζi), i ≥ 1; C0 = (β0 + ζ0, α0)T

Ai =
[
βi ζi
0 αi

]
, i ≥ 0,

where T represents ‘matrix transpose operation’. The stochastic matrix P̃ is an M/G/1-type matrix (see [16]). For such a
model, to demonstrate whether this chain is positive recurrent, the minimal nonnegative solution of the equation G =∑
∞

i=0 AiG
i is needed. To obtain the matrix G and the positive recurrent result, we present some preliminaries based on
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Neuts [16] that we will use in our analysis. Evidently, A =
∑
∞

i=0 Ai is reducible in this Markov chain, and from the equation
(2.3.18) in [16], A can be rewritten as the structure below:

A =


A(1) 0

A(2) 0
. . .

...
A(c) 0

T (1) T (2) · · · T (c) T (0)

 (5)

where A(1), . . . ,A(c) are irreducible stochastic matrices, and matrices in the bottom line may not exist, where
T (1), . . . , T (c) are general matrices, and T (0) are reducible. In this case, all Ai (i ≥ 0) also have the same structure; then
its diagonal part Ai(j) (1 ≤ j ≤ c) is also irreducible. Introduce

π(j)A(j) = π(j), π(j)e = 1, 1 ≤ j ≤ c,

ϑ(j) =
∞∑
i=1

iAi(j)e, 1 ≤ j ≤ c.

Then Theorem 2.3.3 in [16] can be shown in Preliminary 1 here.

Preliminary 1. If A =
∑
∞

i=0 Ai is reducible, G is a stochastic matrix if and only if

π(j)ϑ(j) ≤ 1, 1 ≤ j ≤ c,

and P̃ is positive recurrent if and only if

π(j)ϑ(j) ≤ 1, 1 ≤ j ≤ c;
∞∑
k=1

kBke <∞,

Having the results in Preliminary 1 as preparation, we come back to ourmodel below. Because all Ai are upper triangular,
we can assume that G has the same structure as

G =
[
r11 r12
0 r22

]
.

Substituting G i into the matrix equation, we obtain

r11 =
∞∑
i=0

βir i11 = G[(1− θ)(1− p(1− X(r11)))],

r12 =
∞∑
i=0

r i22ζi + r12
∞∑
i=0

βi

i−1∑
j=0

r j11r
i−1−j
22 ,

r22 =
∞∑
i=0

αir i22 = F [1− p(1− X(r22))].

(6)

To obtain theminimal nonnegative solution, one lemma is first provided. Firstwe introduceρ = pE(X)E(Sb), which presents
the system intensity.

Lemma 1. If ρ < 1, the equation z = F [1 − p(1 − X(z))] has the minimal nonnegative root z = 1 and the equation
z = G[(1− θ)(1− p(1− X(z)))] has the unique root in the range 0 < z < 1.

Proof. First, we consider the equation z = F [1− p(1− X(z))]. Let ψ(z) = F [1− p(1− X(z))] and evidently, 0 < ψ(0) =
F(1− p) < ψ(1) = 1. For 0 < z < 1, ψ ′(z) > 0, ψ ′′(z) > 0.Meanwhile, from ρ = pE(X)E(Sb) < 1, ψ ′(1) = ρ < 1. Thus,
the equation z = ψ(z) has the minimal nonnegative root z = 1. Similarly, we set ϕ(z) = G[(1 − θ)(1 − p(1 − X(z)))].
Then we have 0 < ϕ(0) < ϕ(1) < 1. For 0 < z < 1, ϕ′(z) > 0, ϕ′′(z) > 0. It is shown that the equation
z = G[(1− θ)(1− p(1− X(z)))] has a unique root in the range 0 < z < 1. �

After some computation, we have

G =
[
γ 1− γ
0 1

]
, (7)

where γ is the unique root in the range 0 < z < 1 of the equation z = G[(1 − θ)(1 − p(1 − X(z)))]. Evidently, G is a
reducible stochastic matrix.

Theorem 1. The Markov chain P̃ is positive recurrent if and only if
∑
∞

i=0 iαi = ρ < 1.
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Proof. Because

A =
∞∑
i=0

Ai =
[
G(1− θ) 1− G(1− θ)
0 1

]
is a reducible stochastic matrix. With the notation of the Eq. (5), A(2) = 1 is the degenerative stochastic matrix and has the
degenerative stationary distribution π(2) = 1. On the other hand, Ai(2) = αi, i ≥ 0, and ϑ(2) =

∑
∞

i=0 iAi(2) = ρ. It is
obvious that

∑
∞

k=1 kBke <∞. Thus, by Preliminary 1, the Markov chain P̃ is positive recurrent if and only if

π(2)ϑ(2) = ρ < 1. �

3. Queue length analysis

If ρ < 1, let (L, J) be a set of random variables which follows the stationary distribution of the (Ln, Jn). Denote
πkj = P{L = k, J = j} = lim

n→∞
P{Ln = k, Jn = j}, (k, j) ∈ Ω,

πk = (πk0, πk1), π = (π00,π1,π2, . . . ,πk, . . .).

Here, we explain that the state (0, 0) is reached in two cases. Case 1: in the busy period, the service completion for the
last customer leaves the system with no customer; case 2: a customer is served completely in the vacation period, and no
customer is left. In the classic vacation policy, it is impossible to serve customers during the vacation period and case 2 does
not exist.
We solve for the stationary distribution πkj by noting that the vector π satisfies the equation πP̃ = π and have the

following steady-state equations:

π00 = π00(β0 + ζ0)+ π1C = (π00 + π10)β0 + (π00 + π10)ζ0 + π11α0;

πk0 = π00βk +

k+1∑
j=1

πj0βk+1−j, k ≥ 1;

πk1 = π00ζk +

k+1∑
j=1

πj0ζk+1−j +

k+1∑
j=1

πj1αk+1−j, k ≥ 1.

(8)

Evidently, based on the analysis of the transition, for state (0, 0), with the probability ζ0π00 + ζ0π10 + α0π11, the last
service completion in the busy period leaves the system with no customer; with the probability β0(π00 + π10), a customer
is served completely in the vacation period, and no customer is left. Let u = β0(π00 + π10), and under the classic vacation
policy, it is impossible to serve customers in the vacation period and u = 0.
Now we introduce the following generating functions:

Q (z) = β0(π00 + π10)+
∞∑
k=1

πk0zk, P(z) = ζ0π00 + ζ0π10 + α0π11 +
∞∑
k=1

πk1zk,

where Q (z) and P(z) represent the generating functions of the number of the left customers at the instant when one
customer is served completely during the working vacation period and normal service period, respectively.
First, we consider Q (z) and multiplying the second equation in (8) by zk and summing over k yield

Q (z) = β0(π00 + π10)+ π00
∞∑
k=1

βkzk +
∞∑
k=1

k+1∑
j=1

πj0βk+1−jzk

= π00β(z)+
∞∑
j=1

πj0z j−1
∞∑

k=j−1

βk+1−jzk+1−j

= π00β(z)+
β(z)
z

(
Q (z)− β0(π00 + π10)

)
.

Noting u = β0(π00 + π10), we obtain

Q (z) =
β(z)(π00z − u)
z − β(z)

. (9)

From Lemma 1, γ is the root of the equation z = β(z); thus it is the zero point of denominator of (9). Regularity demands
that the numerator of (9) equals 0 for z = γ . Therefore, we have

u = π00γ .
Then,

Q (z) =
π00β(z)(z − γ )
z − β(z)

. (10)
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Furthermore, from the first equation in (8),
ζ0π00 + ζ0π10 + α0π11 = π00 − β0(π00 + π10) = π00(1− γ ).

Using the expression for P(z), multiplying the third equation in (8) by zk and summing over k, we have

P(z) = π00(1− γ )+ π00
∞∑
k=1

ζkzk +
∞∑
k=1

k+1∑
j=1

πj0ζk+1−jzk +
∞∑
k=1

k+1∑
j=1

πj1αk+1−jzk

= π00ζ (z)+
Q (z)− π00γ

z
ζ (z)+

P(z)− π00(1− γ )
z

α(z). (11)

After some computation, we obtain

P(z) = π00
zζ (z)(z − γ )− (1− γ )α(z)(z − β(z))

(z − α(z))(z − β(z))
.

The PGF of the queue length at the departure epoch has the expression

L(z) = π00 +
∞∑
k=1

(πk0 + πk1)zk = Q (z)+ P(z)

= π00
α(z)(1− z)(β(z)− z)+ z(r − z)(α(z)− β(z)− ζ (z))

(z − β(z))(z − α(z))
. (12)

Using the normalizing condition L(1) = 1, and noting

α′(1) = ρ, β ′(1) = β, ζ ′(1) = ρν ′(1)+ ν(1) =

[
ρ +

pθ
θ
E(X)

]
(1− G(1− θ))− β,

we can obtain

π00 =
(1− ρ)(1− G(1− θ))

1− G(1− θ)− (1− γ )
[
ρG(1− θ)− pθ

θ
E(X)(1− G(1− θ))

] . (13)

Pv(Pb) denotes the probability that an arbitrary customer is served completely by the working vacation service rate
(normal service rate), noted by S = 0 (S = 1); then we have

Pv = P{S = 0} = (π00 + π10)β0 +
∞∑
k=1

πk0 = Q (z)|z=1

=
(1− ρ)G(1− θ)(1− γ )

1− G(1− θ)− (1− γ )
[
ρG(1− θ)− pθ

θ
E(X)(1− G(1− θ))

] ,
Pb = P{S = 1} = ζ0π00 + ζ0π10 + α0π11 +

∞∑
k=1

πk1 = P(z)|z=1 = 1− Pv

=

1− G(1− θ)− (1− γ )
[
G(1− θ)− pθ

θ
E(X)(1− G(1− θ))

]
1− G(1− θ)− (1− γ )

[
ρG(1− θ)− pθ

θ
E(X)(1− G(1− θ))

] .
Meanwhile, we obtain the state probability of the server at the departure epoch, and

P{J = 0} = π00 +
∞∑
k=1

πk0 = π00(1− γ )+ Q (z)|z=1

=
(1− ρ)(1− γ )

1− G(1− θ)− (1− γ )
[
ρG(1− θ)− pθ

θ
E(X)(1− G(1− θ))

] ,
P{J = 1} =

∞∑
k=1

πk1 = P(z)|z=1 − π00(1− γ ) = 1− P{J = 0}

=

1− G(1− θ)− (1− γ )
[
1− ρ + ρG(1− θ)− pθ

θ
E(X)(1− G(1− θ))

]
1− G(1− θ)− (1− γ )

[
ρG(1− θ)− pθ

θ
E(X)(1− G(1− θ))

] .

It is obvious that Pv and Pb are not P{J = 0} and P{J = 1}, respectively. The differences are caused by what happens in
the state (0, 0). If there is no service during the vacation period, i.e., G(1 − θ) = 0, we derive Pb = 1; in other words, all
customers are served completely by the normal service rate. Then Pv becomes P{J = 0} and Pb = P{J = 1}.
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4. Another expression for L(z): stochastic decomposition structure

In last section, we obtain the Eq. (12) for the PGF of the queue length at the departure epochs. Now we obtain another
equivalent expression for L(z) to establish the relationship between GeoX/G/1/WV and the classic GeoX/G/1 queue,
including the stochastic decomposition structure.We find that, in themodelwe analyze, under the condition that a customer
is served by the normal rate, the operation process is stochastically equivalent to that of the GeoX/G/1 queue with general
(nonworking) vacations, and then the results in [19,17] can be used to analyze the normal service period in the working
vacation queues. Now, we mainly use the stochastic decomposition result in [17] to obtain another equivalent expression
for L(z).

4.1. The queue length at the beginning of the busy period

First, we obtain the distribution of the number of the customers Qb at the beginning instant of the busy period. Introduce
the last service completion before the beginning instant of the busy period as a regenerating point; then Qb = k happens
under two cases: in case 1, under the condition that the system stays in the vacation period after the last service and the
vacation time V is not larger than the vacation service time Sv , j (j ≥ 1), customers are left and k − j customers arrive
during the vacation time V ; in case 2, under the same condition, no customers are left and k − 1 customers arrive during
the vacation time V . We first can compute

P{J = 0, V ≤ Sv} =
∞∑
k=0

πk0 × P{V ≤ Sv} = P{J = 0}(1− G(1− θ)) = π00(1− γ ),

which represents the probability that the system stays in the vacation period after the last service and V ≤ Sv . Then, the
distribution of Qb at the beginning instant of the busy period is

τk = P{Qb = k} =
1

π00(1− γ )

( k∑
j=1

πj0νk−j + π00νk−1

)
, k ≥ 1.

The generating function for τk, k ≥ 1 is

Qb(z) =
∞∑
k=1

τkzk =
1

1− γ
z(z − r)ν(z)
z − β(z)

. (14)

Evidently, Qb(1) = 1 and

E(Qb) =
1− G(1− θ)− (1− γ )

[
G(1− θ)− pθ

θ
E(X)(1− G(1− θ))

]
(1− γ )(1− G(1− θ))

.

From the expression for Pb, we have the relation: E(Qb) = Pb(1− ρ)(π00(1− γ ))−1.

4.2. The conditional stochastic decomposition of L(z)

As in [17], the service time of every customer in a regular busy period is called an active period and the length of a vacation
or service interruption is called an inactive period. Certainly, the server can work during the inactive period and alternates
between active and inactive states. Note that for this view to be general we allow the inactive period to have zero length.
Let Ls(LT ) be the number of the customers at the starting (ending) instant of an inactive period in the steady state with the
PGF Ls(z)(LT (z)). With the same notation, we first give the known stochastic decomposition result in [17] as Preliminary 2,
which will be used in the analysis below.

Preliminary 2. If Ls≤st LT , the stationary distribution of the number of customers in the system at service completion epochs is
the convolution of the distribution functions of two independent random variables, one of which is the stationary distribution of
the number of customers in the system at service completion epochs in an ordinary M/G/1-type queue without server vacations,
and the number of customers in the system at service completion epochs has the PGF

P(z) = E(zN)E(zY ) = E(zN)×
Ls(z)− LT (z)
(1− ρ)(1− z)

,

where N represents the number of customers in the system at service completion epochs in an ordinary M/G/1-type queue without
server vacations and Y is an additional variable caused by the vacation.

The detailed results and proofs for this Preliminary can also be seen from Lemma 1 and Theorem 1 in [17].
Below, we conduct the analysis of our working vacation model by the result in Preliminary 2. First, based on the

conditional probability, we have the relation

L(z) = E{zL} = E{zL|S = 1}P{S = 1} + E{zL|S = 0}P{S = 0}. (15)
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In a batch arrival Geo/G/1 queuewithworking vacations, we only choose the departure instants of customers in a regular
busy period as embedded points, and the arrival and departure of customers in a working vacation period only affect the
deviation Ls− LT . From the fact that the operation process under the condition that a customer is served by the normal rate
is stochastically equivalent to that of the GeoX/G/1 queue with general (nonworking) vacations, applying Preliminary 2 for
the first term on the right-hand side in (15), we obtain

E{zL|S = 1} = E(zN)E(zY ) =
(1− ρ)(1− z)α(z)

α(z)− z
×
Ls(z)− LT (z)
(1− ρ)(1− z)

, (16)

where N is the number of customers in a classic GeoX/G/1 queue in the steady state. Here, as we explain above, under the
condition S = 1, the left queue length L can be zero. Thus, the expression for E{zL|S = 1} should not be

E{zL|S = 1} = E{zN |N > 0}E(zY ).

Based on the definition of Q (z), we have

E{zL|S = 0} = P−1v Q (z) =
1− G(1− θ)
(1− γ )G(1− θ)

β(z)(z − γ )
z − β(z)

. (17)

Then, consider Ls(LT ). Note that LT = k (k ≥ 1) includes two disjoint cases: (1) Ls = k, if there is an inactive period of
zero length in two successive active periods. (2) Ls = 0 and there are k customers in the system when a working vacation
ends. Therefore, we have

P{LT = k} = P{Ls = k} + P{Ls = 0}τk, k ≥ 1, (18)

and P{LT = 0} = 0. From (14), we obtain the relation

LT (z) = Ls(z)− P{Ls = 0}(1− Qb(z)).

From (16),

E(zY ) =
P{Ls = 0}(1− Qb(z))
(1− ρ)(1− z)

.

Using E(zY )|z=1 = 1, we obtain P{Ls = 0} = (1− ρ)(E(Qb))−1, and

E(zY ) =
1− Qb(z)
E(Qb)(1− z)

.

Thus, from (15)–(17), we obtain

L(z) = Pv
1− G(1− θ)
(1− γ )G(1− θ)

β(z)(z − γ )
z − β(z)

+ Pb
(1− ρ)(1− z)α(z)

α(z)− z
1− Qb(z)
E(Qb)(1− z)

. (19)

It is easy to verify that Eqs. (19) and (12) are equivalent. The expression in (19) has the certain probability explanation.
With the probability Pv , the queue length L is one random variable with the generating function

1− G(1− θ)
(1− γ )G(1− θ)

β(z)(z − γ )
z − β(z)

,

and with the probability Pb, it is the sum of two random variables, one of which is the classic queue length in the GeoX/G/1
queue without vacations.
From (19), the expected queue length is

E(L) = Pv

{
β

G(1− θ)
+

1
1− γ

−
1− β

1− G(1− θ)

}
+ Pb

{
ρ +

p2(E(X))2E(Sb(Sb − 1))
2(1− ρ)

+
pE(Sb)E(X(X − 1))

2(1− ρ)
+
E(Qb(Qb − 1))
2E(Qb)

}
, (20)

where

E(Sb(Sb − 1)) = F ′′(1), E(X(X − 1)) = X ′′(1), E(Qb(Qb − 1)) = Q ′′b (1).

Evidently, no complete stochastic decomposition structure exists, but based on the Eq. (19), we can derive a conditional
stochastic decomposition structure directly. Denote by Lq the number of the left customers in the system after a service
completion, under the condition that such customer is served completely by the normal service rate, i.e., S = 1. Then,

Lq = {L|S = 1}.

A theorem can be given to demonstrate conditional stochastic decomposition.

Theorem 2. The conditional queue length Lq can be decomposed into two independent random variables: Lq = L0 + Ld, where
L0 is the stationary queue length of a classic GeoX/G/1 queue without vacations under AF policy, and L0 and additional queue
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length Ld have PGFs,

L0(z) =
(1− ρ)(1− z)α(z)

α(z)− z
, Ld(z) =

1− Qb(z)
E(Qb)(1− z)

,

respectively.

4.3. System time of an arbitrary customer

We consider the period when an arbitrary customer spends in the queue and in the service, called the sojourn time S.
Denote the PGF of S by S(z). The customers left behind a departing customer include those who arrive during its sojourn
time S and the residual customers of this batch to which it belongs. Let

pj =
1
E(X)

∞∑
n=j+1

χn, j = 0, 1, . . . .

Then, {pj, j ≥ 0} is the probability that there are j left customers of one batch after an arbitrary customer, and is the ‘residual
life’ of {χj, j ≥ 1}with the PGF

P(z) =
1− X(z)
E(X)(1− z)

.

Thus, we have

L(z) = S[1− p(1− X(z))]P(z).

Differentiating it with respect to z, we finally get the expected sojourn time in the queue

E(S) =
E(L)
pE(X)

−
E(X(X − 1))
2p(E(X))2

, (21)

where E(L) is given in Eq. (20).

Remark 1. Until now, only Wu and Takagi [9] and Yi et al. [20] have presented the research on the M/G/1-type working
vacation queues. The former analyzed a continuous-timeM/G/1 queue with general working vacation using the methods of
embedded Markov chain and plural function, and the latter applied the supplementary variable method to provide the
analysis of the discrete-time Geo/G/1 working vacation queue. Evidently, the plural function method is not applicable
in analyzing the discrete-time cases. In Yi et al. [20], they first considered a Geo/G/1 queue with disasters and used its
results to analyze the working vacation queue, where the analysis of the Geo/G/1 queue was based on the supplementary
variable method. Under this method, we need to analyze the operation processes of two queueing models and establish
the connection between two models. The solving process of the working vacation queue would become more difficult and
complex. In our paper, applying the matrix analytic method can study the Geo/G/1 queue directly, and the matrix G makes
the research process more easy. Thus, this method is more direct and simple compared to that used in [20]. But, if X = 1,
the results are the same with those in [20], and details can be seen below.

5. Special models

Case 1: Geo/G/1 queue with working vacations. If X = 1, then ρ = pE(Sb). The batch-arrival model becomes the Geo/G/1
queue with working vacations which was considered in [20]. From the results in sections above, a series of the stationary
indices in the system can be obtained.

• The vacation service and normal service probabilities:

Pv =
(1− ρ)G(1− θ)(1− γ )

1− G(1− θ)− (1− γ )
[
ρG(1− θ)− pθ

θ
(1− G(1− θ))

] ,
Pb =

1− G(1− θ)− (1− γ )
[
G(1− θ)− pθ

θ
(1− G(1− θ))

]
1− G(1− θ)− (1− γ )

[
ρG(1− θ)− pθ

θ
(1− G(1− θ))

] .
• The expected queue length:

E(L) = Pv

{
β

G(1− θ)
+

1
1− γ

−
1− β

1− G(1− θ)

}
+ Pb

{
ρ +

p2E(Sb(Sb − 1))
2(1− ρ)

+
E(Qb(Qb − 1))
2E(Qb)

}
.

• The expected sojourn time: E(S) = E(L)p−1.
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Fig. 1. E(L) and Pb versus η in GeoD/(Geo1,Geo2)/1.

These results are in agreement with the results of Geo/G/1 queue with working vacations reported in [20].
Case 2: GeoX/G/1 queue with classic vacations. If the server cannot work during the vacation period, the working vacation
policy becomes the classic vacation policy. In this case, evidently, Pv = 0, Pb = 1, and as follows.

• The PGF of the queue length at the departure epoch:

L(Z) =
(1− ρ)(1− z)F [1− p(1− X(z))]

F [1− p(1− X(z))]
×

1− Qb(z)
E(Qb)(1− z)

,

where

Qb(z) =
θz

1− θ(1− p(1− X(z)))
, E(Qb) = Q ′b(1).

• The expected queue length:

E(L) = ρ +
p2(E(X))2E(Sb(Sb − 1))

2(1− ρ)
+
pE(Sb)E(X(X − 1))

2(1− ρ)
+
E(Qb(Qb − 1))
2E(Qb)

.

• The expected sojourn time:

E(S) =
E(L)
pE(X)

−
E(X(X − 1))
2p(E(X))2

.

Thus, we show that some vacation models in the literatures are special cases of our model.

6. Numerical results

In this section, based on the results obtained, we show some numerical cases. Without loss of generality, we assume the
service times during the normal service and working vacation periods follow the geometrical distributions with parameters
µ and η, respectively, whereµ = 0.8, and η can change from 0 to 0.8. Thus, in this system, higher and lower speeds alternate
according to the number of the customers (jobs). The customers (jobs) arrive in a batchX , andwe consider two cases forX , (1)
deterministic (X = 3); (2) geometric (E(X) = 3). Two models are denoted by GeoD/(Geo1,Geo2)/1, GeoG/(Geo1,Geo2)/1,
respectively.
Figs. 1 and 2 show some trends of the system indices in GeoD/(Geo1,Geo2)/1. In Fig. 1, we pay attention to the curves of

the stationary queue length E(L) and the normal service probability Pb with the change of the lower service rate η. Evidently,
the queue length decreases with the increase of η, and the longer the vacation time, the larger the queue length E(L) is; then
when η approaches to µ(= 0.8), E(L) will achieve a fixed value, i.e., the queue length without vacations, no matter how
long the vacation time is. The vacation will have no impact on E(L). It is reasonable and demonstrates that keeping some
service ability during the vacation period decreases the system waiting customers, and when the service rate during the
vacation period is equal to the normal service rate, the system becomes the classic Geo/Geo/1 queue without vacations.
The normal service probability Pb has the similar change trend and Pb decreases with the increase of η, and when θ is
smaller, for example, θ = 0.3, the vacation time is larger and the probability that a customer is served by the normal service
rate becomes smaller. Meanwhile, when η = 0, in other words, the server cannot work during the vacation period, all the
customers will be served by the normal rate µ and Pb is equal to 1.
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Fig. 2. Sojourn time E(S) versus η and ρ in GeoD/(Geo1,Geo2)/1.

Fig. 3. E(L) and Pb versus η in GeoG/(Geo1,Geo2)/1.

In Fig. 2, the trend of the sojourn time E(S) of an arbitrary customer is presented with the changes of two parameters,
the vacation service rate η and system intensity ρ. Certainly, the sojourn time will decrease with the increase of η. But from
the figure, we find that, compared with the effect of the system intensity ρ, the effect of η is smaller and with the increase
of the ρ, the sojourn time increases significantly. Thus, it demonstrates that, in an unloaded system which has the smaller
system intensity, the sojourn time is smaller and it is not necessary to establish the working vacation service rate.
Similarly, in Figs. 3 and 4, we illustrate the trends of the system indices in GeoG/(Geo1,Geo2)/1 model. Fig. 3 shows

the trends observed for the expected queue length E(L) and the normal service probability Pb under three systems with
ρ = 0.1225, ρ = 0.375 and ρ = 0.75, respectively. That is, E(L) decreases as η increases and in a loaded system (ρ = 0.75),
E(L) is larger evidently. On the other hand, in an unloaded system (ρ = 0.1225), the number of vacations will be larger and
the probability that a customer is served by the normal service rate is smaller than that in a loaded system (ρ = 0.75 or
ρ = 0.375).
Furthermore, we have investigated the expected sojourn time E(S) regarding the combinations of the values of the

vacation rate θ and vacation service rate η in Fig. 4. Certainly, E(S) decreases as η and θ increase. Meanwhile, with the
increase of θ , in other words, the vacation time decreases, the decreasing degree of E(S) regarding η declines and when
θ = 1, E(S) achieves a fixed value, i.e., the sojourn time in the system without vacations. On the other hand, with the
increase of η, the decreasing degree of E(S) regarding θ declines and when η = µ, the system reduces to the model without
vacations and E(S) achieves a fixed value.

7. Application to an Ethernet Passive Optical Network

The following is a possible scenario inwhich our results inworking vacation queues can be used. Consider an EPON,which
consists of one optical line terminal (OLT) situated at the central office (CO) and multiple optical network units (ONUs)
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Fig. 4. Sojourn time E(S) versus η and θ in GeoG/(Geo1,Geo2)/1.

Fig. 5. Typical structure of an EPON.

located at customer premises equipment (CPE), and a passive splitter/combiner. As illustrated in Fig. 5, EPON provides
bi-directional transmissions, where in the downstream direction (from OLT to the ONUs), the OLT broadcasts to all ONUs.
The frames are sent to their destination ONUs by using media access control (MAC) layer. In the upstream direction (from
ONUs to the OLT), because it is a multipoint-to-point network, the fiber channel is shared by all ONUs. Therefore, scheduling
is needed to prevent data packet collision from different ONUs. A robust mechanism is needed for allocating time slots
and the upstream bandwidth for each ONU to transmit data. In EPON, the mechanism is called MPCP involving both GATE
message and REPORTmessage. The ONUsmay send REPORTmessages about the queue state of eachONU to the OLT. The OLT
allocates upstream bandwidth to each ONU by sending GATEmessages with the form of a 64-byte MAC control frame. GATE
message contains a time-stamp and grants time slots which represent the periods that ONU can transmit data, so that the
OLT can allocate the upstream bandwidth and time slots to each ONU accordingly. Other schemes include the interleaved
polling schemewith an adaptive cycle time (IPACT), which allocates time slots in the buffer of theONUs. These two strategies
are efficient in the EPON performance analysis, but they may not match the immediate needs of each ONU and cause the
congestion in the EPON.
If the working vacation scheme is applied to the EPON, we can imagine that each ONU can alternate to transmit the

data/message at a high or low rate according to the number of the data, so that the immediate needs and avoidance of
congestion are satisfied. Below we propose an adaptive scheme which combines the gated and polling service schemes
together based on the working vacation for allocating time slots and the upstream bandwidth for each ONU to transmit
data. We consider each ONU in the EPON system separately and treat it as a single server queueing model. First, the gated
service and working vacation service queues are presented respectively.
Under the gated service scheme, ONU i requires the right of sending data, and it closes the gate at the beginning of every

transmission period; then ONU i only transmits data packet which have been present in this transmission period, and the
new arrival data packets will be waiting outside of the gate according to arrival ordering. When the data packets inside gate
of ONU i have been transmitted, the systemwill turn to next ONU i+1 and transmit data packet inside the gate of ONU i+1.
For simplicity but without loss of generality, it is assumed that each ONU generates a single packet during a slot, i.e., one
data each batch, and the service time follows the geometric distribution. Then this single ONUwith the gated service can be
modeled as a Geo/(Geo1,Geo2)/1 gated service multiple vacation queueing model.
Under the working vacation scheme, ONU i has permanent wavelengths assigned to it with the capability of transmitting

data packet at a nominal rate ηi, and there are additional wavelengths in the upstream channel with the capacity to service
at an additional average rate of η∗. Such additional wavelengths operate in a cycle mode from one ONU to another ONU,
that is, if ONU i is currently operating at a total service rate of ηi + η∗, when the buffer of ONU i becomes empty at a service
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Fig. 6. Average packet delay time with gated service.

Fig. 7. Average packet delay time with working vacation scheme.

completion, the polling wavelengths are reconfigured to ONU i+1, then ONU i instantaneously reduces its service rate to ηi
and only after a reconfiguration delay of∆, ONU i+ 1 increases its service rate to ηi+1 + η∗. This cycle continually repeats
itself. This operation process is also similar to that in [8]. Then each ONU can be modeled as a Geo/(Geo1,Geo2)/1 working
vacation queueing model.
To specify a detailed model, it is assumed that this EPON is a five router symmetric system. If we design data packets

with fixed size as 1000 bits and the total transmission speeds of the EPON is 1 Gb/s, the transmission time of a data packet
equals to 1µs (i.e. the time length of a slot). We assume that the polling time follow a geometric distribution and the service
time µ = 0.95, η = 0.05. For working vacation service scheme, the polling time should have the additional time which is
assumed as 10 × traffic intensity (ρ). In Figs. 6 and 7, we plot the average packet delays from the effect of traffic intensity
ρ and vacation time, under gated service and working vacation scheme, respectively. Evidently, along with the increase of
traffic intensity ρ, not only under gated service scheme but also under working vacation service scheme, the average delay
time increases. But compared to two figures, when ρ > 0.6 and E(V ) > 8 ms, the average packet delay in ONUs of the
gated service increases more obviously than working vacation service scheme. In other situation, the performance of the
gated service excels the working vacation service. Therefore, to compare the gated service and working vacation service, we
cannot find one service scheme to surpass another in all situations.
To exploit the advantages of two schemes, the adaptive service scheme is proposed, according to a criterion, i.e. the delay

time of data packets in ONUs is minimal. The ONUs will decide which service scheme they will take between gated service
and working vacation service scheme. The algorithm is
If E(Wworking) > E(Wgate),
The adaptive service scheme adopt the working vacation service;
Else
The adaptive service scheme adopt the gated service.
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Fig. 8. Average packet delay time with adaptive service.

In Fig. 8, we adopt the adaptive service and depict the curve of the average packet delay. From the figure, the effects of
the traffic intensity ρ and vacation time have become smoother than the effects under the single scheme. It is illustrated
that the performance of EPON is improved considerably under this adaptive service based on the working vacation scheme.
Similar scheduling also happen in other real fields, such as wireless ATM, Call Center, and Digital Commerce. From this

practical example, it is also shown that the results in this paper would be beneficial not only to queueing theorists but also
to many practitioners who try to evaluate the performance of their real systems.

8. Conclusions

In this paper, we have studied the system indices in a batch arrival Geo/G/1 queue with working vacations. We have
formulated two methods to obtain the PGFs of the queue length at the departure epoch and shown the formulas of some
other performance measures, such as the queue length at the busy period initiation epoch, the normal (vacation) service
probability and the sojourn time. We have found two important methods, the matrix analytic approach and the stochastic
decomposition theory, to analyze the working vacation M/G/1-type queues. Meanwhile, our special models and numerical
examples conclude that our working vacation model is justified and system parameters affect the steady-state mean queue
length and mean delay. Lastly, the performance analysis of an EPON would suggest that the working vacation policy can
represent various types of problems in practice efficiently.
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