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Abstract

We investigate the dynamic problem of how much attention an investor should pay to news

in order to learn about stock-return predictability and maximize expected lifetime utility. We

show that the optimal amount of attention is U-shaped in the return predictor, increasing with

both uncertainty and the magnitude of the predictive coefficient, and decreasing with stock-

return volatility. The optimal risky asset position exhibits a negative hedging demand that is

hump-shaped in the return predictor. Its magnitude is larger when uncertainty increases, but

smaller when stock-return volatility increases. We test and find empirical support for these

theoretical predictions.
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1 Introduction

Growing empirical evidence suggests that investors’ attention is time-varying.1 This affects trading

and asset prices, and therefore significantly impacts financial markets.2 The aim of this paper is to

show that these fluctuations result from a rational information gathering behavior.

We build a dynamic portfolio choice model to investigate the problem of how much attention an

investor should pay to news. Our setup is based on the incomplete-information literature,3 which

implicitly assumes that the set of available information is exogenously given. The objective here is

to relax this assumption and assume that information is optimally acquired at a cost. Similar to

Huang and Liu (2007), we consider the joint portfolio choice and information acquisition problem

faced by an investor who does not observe expected stock returns. While information acquisition is

a one time choice in Huang and Liu (2007), it is dynamic in our framework. This allows us to provide

empirically testable predictions on the dynamic relation between attention, risky investments, and

the relevant state variables.4

In our theoretical model, an agent can invest in one risk-free asset and one risky stock with

unobservable expected returns. At each point in time, the investor optimally chooses her consump-

tion, portfolio, and quantity of information needed to estimate expected returns and maximize

expected lifetime utility of consumption. Information acquisition regulates both the learning and

the investment decisions of the investor. By acquiring more accurate information, i.e. by paying

more attention to news,5 the investor is able to better estimate expected returns and, therefore, to

increase her expected utility, but at the expense of decreasing her current wealth. In other words,

the investor faces a dynamic trade-off problem of asset and attention allocation.

The investor assumes that expected returns are a linear function of an observable predictive

1Barber and Odean (2008); Da, Engelberg, and Gao (2011); Sicherman, Loewenstein, Seppi, and Utkus (2015);
Fisher, Martineau, and Sheng (2016).

2Chien, Cole, and Lustig (2012); Andrei and Hasler (2014); Fisher et al. (2016); Hasler and Ornthanalai (2017).
3Refer to the seminal papers by Detemple (1986); Gennotte (1986); Dothan and Feldman (1986).
4One related segment of the literature postulates that information has a hedonic impact on utility (Loewenstein,

1987; Caplin and Leahy, 2001, 2004; Brunnermeier and Parker, 2005; Pagel, 2013; Andries and Haddad, 2014). This
can generate different levels of attention depending on the state of the world and can thus explain the fluctuations
in attention we observe. Another part of the literature postulates that investors have limited ability to process infor-
mation (Sims, 2003; Van Nieuwerburgh and Veldkamp, 2006, 2010; Kacperczyk, Van Nieuwerburgh, and Veldkamp,
2016). Therefore, information does not directly enter the utility function, but indirectly helps investors make better
decisions under uncertainty.

5See Sims (2003), Peng and Xiong (2006), Kacperczyk et al. (2016), Mondria (2010), Mondria and Quintana-
Domeque (2013) for a similar interpretation of attention.
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variable (Xia, 2001).6 The focus of the paper is on the predictive coefficient, which is stochastic

and unobservable. The investor uses all of the available historical data to estimate the predictive

coefficient and then construct a forecast of returns. In additon to historical data, the investor can

also choose to improve her estimation by collecting news, but at a cost. Because perfect learning—

observing expected returns—has an infinite cost, the investor must choose an optimal finite amount

of attention. We characterize this optimal amount of attention and its responsiveness to changes

in the state variables of the model.

The predictive variable determines, to a large extent, the optimal amount of attention to news.

We show that the investor pays more attention to news the further away the predictive variable is

from its long-term mean. In these states, the investor attempts to profit from the reversion to the

mean of expected returns and thus acquires additional information to bet on the upcoming trend.

Because this arises whenever the predictive variable is far away from its long-term mean, attention

exhibits a U-shaped pattern.

Furthermore, we show that greater uncertainty unambiguously increases attention to news. The

reason is that greater uncertainty increases the volatility of expected returns and therefore increases

the likelihood of large future trends. Since the investor can efficiently exploit these trends only if

her estimate of the predictive coefficient is accurate, the optimal decision is to pay more attention

to news.

We also find that attention to news decreases with the volatility of realized returns, which

we assume to be stochastic (Chacko and Viceira, 2005; Liu, 2007). When the volatility of realized

returns increases, the quality of information provided by those returns deteriorates, which decreases

the volatility of expected returns. This, in turn, decreases the likelihood of large future trends and

prompts the investor to decrease her attention to news.7

Finally, attention to news increases with the magnitude of the estimated predictive coefficient.

A predictive coefficient of large magnitude implies highly volatile expected returns, which prompts

the investor to be particularly attentive to news.

6See also Kandel and Stambaugh (1996), Barberis (2000), and Brandt, Goyal, Santa-Clara, and Stroud (2005) for
equivalent assumptions.

7Note that in our model there is a distinction between “expected return volatility” and “realized return volatility.”
The former depends on all state variables and can be thought of as a forward looking measure (which can be proxied
by the VIX index), whereas the latter is a contemporaneous measure. As such, our model predicts that attention
to news increases when the expected return volatility is high (see also Fisher et al., 2016) but decreases when the
realized return volatility is high.

3



The optimal risky investment share increases with the Sharpe ratio of the stock, and features

a negative hedging demand because expected returns are positively correlated to returns. The

hedging demand is hump-shaped in the predictive variable, it is more negative when uncertainty

increases, and it is less negative when stock-return volatility increases. This is because expected

returns are particularly sensitive to return shocks when the predictive variable is far from its long-

term mean, uncertainty is high, and stock-return volatility is low.

In the empirical section of the paper, we test the dependence of attention to news and the

risky investment share on the state variables of our model. We first calibrate the model to S&P

500 returns and define the predictive variable as the S&P 500 earnings-to-price ratio. Using this

dataset, we then build three model-implied time series: uncertainty, attention, and risky investment

share. We first compare these time series to their empirical counterparts and find a strong positive

correlation in each case. We also provide evidence that our model-implied measure of attention is

counter-cyclical and strongly predicts the VIX index. Consistent with the predictions of the model,

we find that the empirical proxy for attention to news is indeed U-shaped in the predictive variable,

it increases with both uncertainty and the magnitude of the predictive coefficient, and it decreases

with stock-return volatility. In addition, we show that the empirical proxy for the risky investment

share increases with the Sharpe ratio of the stock and features a negative hedging demand whose

shape mirrors the model’s prediction. We therefore conclude that our rational setup accurately

describes investors’ dynamic asset and attention allocation behavior.

This paper complements a large body of literature that considers portfolio selection problems

with stochastic expected returns, stochastic volatility, incomplete information, and uncertainty

about predictability.8 In the costly information acquisition literature, Detemple and Kihlstrom

(1987) analyze the demand for information and the equilibrium price of information in the context

of a production economy. Veldkamp (2006a,b) shows that costly information acquisition helps

explain excess co-movement and the simultaneous increases in emerging markets’ media coverage

and equity prices. The most closely related paper is Huang and Liu (2007), who consider a dynamic

8For portfolio selection problems with stochastic expected returns see Kim and Omberg (1996), Brandt (1999),
Campbell and Viceira (1999), Ait-Sahalia and Brandt (2001), Wachter (2002), with stochastic volatility see Chacko
and Viceira (2005), Liu (2007); with incomplete information see Detemple (1986), Gennotte (1986), Dothan and
Feldman (1986), Feldman (1989), David (1997), Brennan (1998), Veronesi (1999, 2000), Brennan and Xia (2001); and
with uncertainty about predictability see Kandel and Stambaugh (1996), Barberis (2000), Xia (2001), and Brandt
et al. (2005).

4



portfolio choice problem with static costly information choice. That is, the investor dynamically

chooses her portfolio, but the accuracy and frequency of information is chosen at time zero only. The

investor optimally acquires a flow of information that has limited accuracy and limited frequency,

which potentially makes her under- or over-invest. The frequency and accuracy of information

acquisition is shown to be decreasing and increasing with risk aversion, respectively.

Our paper contributes to this literature by considering a dynamic portfolio choice and infor-

mation acquisition problem in the presence of uncertainty about stock-return predictability. Our

study sheds light on the dynamic relation between attention, risky investments, and the relevant

state variables. More precisely, we show that attention is U-shaped in the predictive variable, in-

creasing with uncertainty about the predictive coefficient, decreasing with stock-return volatility,

and increasing with the magnitude of the predictive coefficient. As a result, the relation between

attention and the risky investment share is positive when expected returns are high and negative

when expected returns are low. These predictions are first described in our theoretical framework,

and are then shown to be supported by the data.

The remainder of the paper is organized as follows. Section 2 describes the economy and ex-

amines the optimal attention, consumption, and portfolio choice problem of the investor. Section 3

calibrates the parameters of the model and describes the results. Section 4 performs the empirical

analysis. Section 5 concludes. The Appendix contains all proofs and computational details.

2 The model

Consider an economy populated by an investor with utility function defined by

U(c) = E
(∫ ∞

0
e−δsu(cs)ds

)
, (1)

where ct is the consumption at time t, δ is the subjective discount rate, and u(c) is an increasing

and concave function of c differentiable on (0,∞).

The investor continuously trades one risk-free asset paying a constant rate of return rf , and
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one risky asset (the stock) whose price dynamics satisfy

dPt
Pt

= µtdt+
√
VtdBP,t, (2)

where µt is the instantaneous expected return on the stock and Vt is the instantaneous variance of

stock returns.

The investor operates under partial knowledge of the economy. Specifically, the expected return

µt is unobservable (Brennan, 1998; Xia, 2001; Ziegler, 2003), but the investor knows that it is an

affine function of an observable state variable yt. That is, the expected return satisfies

µt = µ̄+ βt(yt − ȳ), (3)

where βt is an unobservable predictive coefficient (Xia, 2001). The observable predictive variable yt

and the unobservable predictive coefficient βt evolve according to the following diffusion processes:

dyt = λy(ȳ − yt)dt+ σydBy,t (4)

dβt = λβ(β̄ − βt)dt+ σβdBβ,t, (5)

where we assume that ȳ, λy, σy, β̄, λβ, and σβ are known constants. The variance of stock returns

is observable and follows a square-root process (Heston, 1993; Liu, 2007):

dVt = λV (V̄ − Vt)dt+ σV
√
VtdBV,t, (6)

where V̄ , λV and σV are known constants. The four Brownian motions BP,t, By,t, Bβ,t, and BV,t

are independent from each other.

2.1 The inference process: active learning

Given the dynamics of the state variables described above, the investor’s problem consists of infer-

ring the predictive coefficient βt before choosing an optimal portfolio and consumption rule that

maximizes the expected lifetime utility of consumption.

The investor has the opportunity to actively learn about return predictability, i.e. to collect
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arbitrarily accurate information about the predictive coefficient βt. This is achieved by acquiring

a news signal with the following dynamics:

dst = βtdt+
1
√
at
dBs,t, (7)

where Bs,t is an Brownian motion independent of BP,t, By,t, Bβ,t, and BV,t.

The dynamics of the news signal (7) are interpreted as follows. Assume the investor acquires

nt signals of equal precision sjt , j = 1, . . . , nt at time t:

dsjt = βtdt+ σsdB
j
t , j = 1, . . . , nt (8)

where Bj
t is independent of BP,t, By,t, Bβ,t, and BV,t for all j and Bj

t ⊥ Bi
t, ∀j 6= i. Aggregating

yields the following dynamics of the aggregate signal st acquired by the investor

dst ≡
1

nt

nt∑
j=1

dsjt = βtdt+
σs√
nt
dBs,t, (9)

where Bs,t is independent from BP,t, By,t, Bβ,t, BV,t. Setting σs√
nt
≡ 1√

at
in Equation (9) leads to

Equation (7). That is, the investor controls the accuracy at of the aggregate signal by choosing the

number of individual signals nt she acquires. When the investor is attentive to news, the number

of individual signals she acquires is large and the aggregate signal is accurate. When the investor is

inattentive to news, the number of individual signals she acquires is small and the aggregate signal

is inaccurate. Given this, we call at the investor’s attention to news.

Denote by Ft the information set of the investor at time t. This information set includes:

realized returns defined in (2), changes in the predictive variable defined in (4), changes in the

instantaneous variance of stock returns defined in (6), and changes in the signal defined in (7).

This last source of information is the focus of our paper. The key feature is that the investor is

able to change her information acquisition policy by controlling the magnitude of the noise in the

signal (7) at any point in time. This results in a control problem with an endogenous information

structure.

Let us denote by β̂t ≡ E [βt|Ft] the estimated predictive coefficient and its posterior variance
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by νt ≡ E[(βt − β̂t)2|Ft]. Thus,

βt ∼ N(β̂t, νt), (10)

where N(m, v) denotes the Normal distribution with mean m and variance v. Henceforth, we

refer to the estimated predictive coefficient β̂t as the filter and to the posterior variance νt as the

uncertainty.

The dynamics of the state variables observed by the investor are obtained from standard filtering

results (Liptser and Shiryaev, 2001) and are provided in Proposition 1 below.

Proposition 1. The dynamics of the observed state variables satisfy

dPt
Pt

=
(
µ̄+ β̂t(yt − ȳ)

)
dt+

[
√
Vt 0 0 0

]
dB̂⊥t (11)

dst = β̂tdt+

[
0 0 0 1√

at

]
dB̂⊥t (12)

dyt = λy(ȳ − yt)dt+

[
0 σy 0 0

]
dB̂⊥t (13)

dVt = λV (V̄ − Vt)dt+

[
0 0 σV

√
Vt 0

]
dB̂⊥t . (14)

The dynamics of the filter and uncertainty are

dβ̂t = λβ(β̄ − β̂t)dt+

[
νt(yt−ȳ)√

Vt
0 0 νt

√
at

]
dB̂⊥t (15)

dνt
dt

= −
(

(yt − ȳ)2

Vt
+ at

)
ν2
t − 2λβνt + σ2

β, (16)

where B̂⊥t ≡
[
B̂⊥1,t B̂⊥2,t B̂⊥3,t B̂⊥4,t

]>
is a 4-dimensional vector of independent Brownian motions

under the investor’s observation filtration.

Proof. See Liptser and Shiryaev (2001).

Equations (15) and (16) describe the investor’s updating rule regarding the expectation and

variance of the predictive coefficient. The instantaneous change in the filter is driven by four

sources of information: realized returns, changes in the predictive variable, changes in volatility,

and changes in the news signal. As Equation (15) shows, the investor assigns stochastic weights to
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these four sources of information.9 As we will describe below, the size of these weights depend on

the relative informativeness of each source of information.

Equation (16) describes the change in uncertainty when the investor controls her attention to

news. Uncertainty is locally deterministic and decreases faster when the investor’s attention is high.

The decline in uncertainty is weaker when the predictive coefficient is more persistent (i.e. low λβ)

or when the volatility of realized returns Vt is high. Finally, the last term in Equation (16) shows

that the larger the volatility of the predictive coefficient, the stronger the increase in uncertainty

over time.

The informativeness of the signal depends on investor’s attention, which impacts learning in

two ways. First, it has a direct impact on the instantaneous volatility of the filter in Equation (15).

Second, it drives the drift of uncertainty in Equation (16). We analyze each of these two effects

separately. To facilitate our discussion, we refer to dB̂⊥1,t as return shocks and to dB̂⊥4,t as news

shocks.

2.1.1 The impact of attention on the filter

The magnitude of the impact of return shocks and news shocks on the filter depend on the uncer-

tainty νt, on the difference between the predictive variable and its long-term mean yt − ȳ, and on

investor’s attention at. The following example provides insight on how the investor updates her

beliefs using each piece of information.

Suppose that yt > ȳ. Then, an unexpectedly high return (dB̂⊥1,t > 0) means that the current

estimate of βt is too low, and the investor adjusts β̂t upwards. The opposite happens when yt < ȳ:

An unexpectedly high return means that the current estimate of βt is too high, and the investor

adjusts β̂t downwards. Hence, the first coefficient in the diffusion of the filter has the same sign as

yt − ȳ (see also Xia (2001) for a similar interpretation).

An additional component drives the filter through active learning from news shocks. When

attention is high, the signal becomes more informative and therefore the investor increases the

weight assigned to news shocks, as can be seen from the last coefficient in the diffusion of the filter.

9Because the Brownian motions BP,t, By,t, Bβ,t, BV,t, and Bs,t are uncorrelated, shocks to the predictive variable
yt and to return variance Vt do not impact the investor’s estimate of βt. Hence, the second and third components of
the diffusion of β̂t are both equal to zero.
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Overall, the instantaneous variance of the filter is an increasing function of attention:

Var[dβ̂t] = ν2
t

(
(yt − ȳ)2

Vt
+ at

)
. (17)

As attention converges to infinity, the instantaneous variance of the filter converges to its upper

bound σ2
β. This upper bound represents the variance of the filter when the predictive coefficient βt

is perfectly observable.

2.1.2 The impact of attention on uncertainty

The predictive variable yt is a key driver of the dynamics of uncertainty. Intuitively, if yt is close to

its long-term mean, learning from realized returns becomes ineffective in estimating βt because the

signal-to-noise ratio is very low. Therefore, the reduction in uncertainty is weak when yt − ȳ ≈ 0.

In contrast, when yt is far away from its long-term mean, realized returns offer valuable information

on the predictive coefficient βt and uncertainty decreases faster.

Equation (16) shows that uncertainty decreases faster when attention is high. It is worth

noting that uncertainty does not converge to a “steady state” in this model because three stochastic

variables, namely the predictive variable yt, the volatility of asset returns Vt, and investor’s attention

at, drive its dynamics.

2.2 Properties of the estimated expected returns

The following lemma describes the properties of the estimated expected return of the stock, defined

as:

µ̂t = µ̄+ β̂t(yt − ȳ). (18)

Lemma 1. The dynamics of the estimated expected return follow

dµ̂t = (λy + λβ)

(
µ̄+

β̄λβ(yt − ȳ)

λy + λβ
− µ̂t

)
dt+

[
(yt−ȳ)2νt√

Vt
σyβ̂t 0 νt

√
at(yt − ȳ)

]
dB̂⊥t . (19)

The mean square error of this estimate (i.e. the uncertainty about expected returns, which we denote
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hereafter by ηt) satisfies

ηt ≡ E
[
(µt − µ̂t)2

∣∣Ft] = (yt − ȳ)2νt. (20)

The instantaneous variance of the estimated expected return is

Var[dµ̂t] = ν2
t (yt − ȳ)2

(
at +

(yt − ȳ)2

Vt

)
+ σ2

y β̂
2
t . (21)

Var[dµ̂t] is a monotone increasing function of attention. Its maximum depends on both β̂t and yt

and is given by

lim
at→∞

Var[dµ̂t] = σ2
β(yt − ȳ)2 + σ2

y β̂
2
t . (22)

Expected returns mean-revert at speed λy + λβ to a stochastic level that depends on the pre-

dictive variable. If the long-term mean β̄ is assumed to be zero—which means that there is no

predictability on average—then the stochastic level simplifies to the constant µ̄.

As shown in Equation (19), when the filter β̂t is large, expected returns react to changes in the

predictive variable yt (the second component of the diffusion). Furthermore, if investor’s attention

is high, expected returns react to news shocks, but only when yt 6= ȳ (the fourth component of the

diffusion). This concurs with the relation between returns and the predictive variable described in

Equation (3), whereby more news on the predictive coefficient βt—no matter how accurate—is not

going to change investor’s view about expected returns if yt − ȳ = 0.

High uncertainty νt magnifies the sensitivity of expected returns to return shocks (the first

component of the diffusion). When yt − ȳ 6= 0, an increase in uncertainty increases the variance of

expected returns. This is shown in Equation (21). Furthermore, higher attention (or more accurate

news) increases the variance of expected returns by making them more sensitive to news shocks.

The variance of expected returns reaches its maximum when attention converges to infinity, as

shown in Equation (22).10

To summarize, attention to news drives two important factors, the variance of expected returns

10We derive the latter equation by applying Itô’s lemma to the expected return in Equation (3) and by assuming
that the predictive coefficient βt is perfectly observable.
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and the drift of uncertainty. More attention increases the sensitivity of expected returns to news

shocks and therefore augments their variance. At the same time, more attention yields lower future

uncertainty by magnifying the negative component of its drift.

2.3 Optimal attention, portfolio choice, and consumption

Turning now to the investor’s optimization problem, we consider µ̂t as a state variable instead of β̂t,

with the aim to better interpret and characterize our results. The investor’s problem is to choose

consumption ct, attention to news at, and the risky investment share wt so as to maximize her

expected lifetime utility of consumption conditional on her information set at time t, Ft. That is,

the investor’s maximization problem is written

J(Wt, µ̂t, yt, Vt, νt) ≡ max
c,a,w

E
[∫ ∞

t
e−δ(s−t)u(cs)ds

∣∣∣∣Ft] , (23)

subject to the budget constraint

dWt =
[
rfWt + wtWt

(
µ̂t − rf

)
− ct −Kt

]
dt+ wtWt

[
√
Vt 0 0 0

]
dB̂⊥t . (24)

We assume that the total information cost, Kt, is linear in wealth:

Kt = K(at)Wt. (25)

This assumption reflects the fact that, similar to the price of financial securities, the price of

information tends to increase as time passes (i.e., the price of information features an exponential

time trend). Furthermore, the above cost function preserves the homogeneity of the value function

in wealth and therefore implies that attention, the consumption-to-wealth ratio, and the information

cost-to-wealth ratio are independent of wealth at the optimum. Finally, the per-unit of wealth cost

function, K(at), is assumed to be increasing and convex in attention, which implies that perfect

information (at → ∞) cannot be attained, and thus the investor is never able to observe the true

level of expected returns.

Since attention does not depend on wealth at the optimum, it is a function of the expected

return µ̂t, the predictive variable yt, stock-return variance Vt, and uncertainty νt. These state
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variables do not feature any trend and thus neither does attention. The stationary dynamics of

optimal attention implied by the cost function in (25) are therefore consistent with Sims (2003),

who argues that investors have limited information-processing capacity, i.e. investors’ attention is

bounded. If instead attention were increasing with wealth, then it would tend to increase as time

passes and would therefore not be bounded.

Two additional considerations about the information cost function (25) are worth mention-

ing. First, this specification implies that it is more costly to acquire information when one gets

wealthier. In reality, it could be the case that the cost is actually decreasing in wealth, because a

wealthier investor may acquire more information and thus may get a volume discount on the cost.

In Appendix C, we discuss the implications of a more general information cost specification, which

allows Kt to be ex ante either increasing with wealth, independent of wealth, or decreasing with

wealth. We show that such a specification does not change the qualitative results of our paper.

Second, the specification (25) implies that if two investors (A and B) start with different levels

of wealth WA
0 and WB

0 , then they will incur different costs of information at any given time t

(because the wealth at time t will be different across investors). To avoid such situations in which

there is a discount or an overcharge across investors, the cost function can be normalized by dividing

by the initial level of wealth. This modification clearly does not alter our results, but ensures that

poor and rich investors pay the same price for the same piece of information at any given time t.

To summarize, given the total information cost (25), if the investor chooses to be inattentive to

news—and therefore to learn using only the information provided by the price Pt, the predictive

variable yt, and the variance of stock returns Vt—then her entire wealth is invested in the financial

market. In contrast, if the investor decides to pay attention to news (at > 0), then a positive

fraction of her wealth flows to the information market in order to pay for research expenditures.

Attention, therefore, can be perceived as a non-financial security in the investor’s portfolio.

Proposition 2. The optimal consumption c∗t , risky investment share w∗t , and attention to news a∗t
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are given by

c∗t = u−1
c (JW ) (26)

w∗t =
µ̂t − rf

Vt

−JW
JWWWt

+
νt(yt − ȳ)2

Vt

−JWµ

JWWWt
(27)

a∗t = Φ

(
1

2JWWt

(
ν2
t (yt − ȳ)2Jµµ − 2ν2

t Jν
))

, (28)

where Φ(·) is a positive and increasing function defined as the inverse of the derivative of the cost

function, Φ(·) ≡ K ′(·)−1.

Proof. See Appendix A.

Equation (26) is the standard optimal consumption derived by Merton (1971). The optimal

risky investment share, expressed in Equation (27), comprises a myopic and a hedging portfolio

(Merton, 1971). The hedging term represents the effect of parameter learning and significantly

impacts the asset allocation decision (Brennan, 1998; Xia, 2001). It is positive if γ < 1 and

negative if γ > 1. It vanishes when the state variables are observable (i.e. when νt = 0) because,

by assumption, none of these variables are correlated to returns.

Our object of focus is the optimal attention a∗t , expressed in Equation (28). Since the function

Φ(·) is positive and increasing, we can directly analyze the term in brackets. Two factors drive the

optimal level of attention: the state risk aversion factor Jµµ, which measures the extent to which

the investor (dis)likes variations in expected returns and the uncertainty factor Jν , which measures

the extent to which the investor (dis)likes uncertainty. Recall from Section 2.2 that attention drives

both the variance of expected returns and the drift of uncertainty. The state risk aversion factor

Jµµ is multiplied by ν2
t (yt− ȳ)2, which is the marginal effect of attention on the variance of expected

returns (see Equation (21)). The uncertainty factor Jν is multiplied by −ν2
t , which is the marginal

effect of attention on the drift of νt (see Equation (16)).

Because our setup features mean-reverting expected returns, the value function is convex in

µ̂t, which yields Jµµ > 0 (Kim and Omberg, 1996). That is, the investor prefers expected return

volatility because it creates the possibility of trends that she can exploit. The higher the volatility,

the higher the convexity of the value function and thus the investor pays greater attention to

accurately estimate the predictive coefficient and efficiently exploit future trends.
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Two opposing forces determine the sign of the uncertainty factor Jν . First, the investor dis-

likes uncertainty; second, the investor likes uncertainty because it leads to higher expected return

volatility and a higher likelihood of trends. Depending on which of these two forces dominates, the

uncertainty factor Jν is positive or negative. If it is negative, the investor acquires more informa-

tion to reduce uncertainty. If it is positive, the investor acquires less information in order to keep

expected return volatility high and take advantage of trends.

Overall, Proposition 2 implies that the investor optimally chooses to be more attentive to news

when (i) uncertainty is high and (ii) the predictive variable moves away from its long-term mean.

These results are independent on the investor’s utility function. As Equation (28) shows, the effects

of uncertainty and the predictive variable on attention reinforce each other, yielding high attention

in environments characterized by high uncertainty and by a large difference between the predictive

variable and its long-term mean.

2.4 CRRA utility and quadratic attention cost

To illustrate the effects of optimal learning about predictability, we assume that the investor has

a CRRA utility function with risk aversion parameter γ. In addition, the per-unit of wealth

information cost function is specified in quadratic form:

K(at) = ka2
t , (29)

where k > 0 is the information cost parameter. In this case, the inverse of the derivative of the

function K(.) satisfies

Φ(x) =
x

2k
. (30)

Under these assumptions, the value function J can be written as

J(Wt, µ̂t, yt, Vt, νt) =
W 1−γ
t

1− γ
φ(µ̂t, yt, Vt, νt). (31)

Computing the partial derivatives of J as a function of the partial derivatives of φ and substi-

tuting them into the first-order conditions yields the optimal consumption, risky investment share,
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and attention to news provided in Proposition 3 below.

Proposition 3. With CRRA utility and quadratic attention cost, the optimal consumption c∗t , risky

investment share w∗t , and attention to news a∗t are given by

c∗t = φ−1/γWt (32)

w∗t =
µ̂t − rf

γVt
+
νt(yt − ȳ)2

γVt

φµ
φ

(33)

a∗t = ν2
t

(
φν
φ

1

2k(γ − 1)
+
−φµµ
φ

(yt − ȳ)2

4k(γ − 1)

)
. (34)

The optimal consumption defined in Equation (32) is well-known (Merton, 1971) and does

not require any further analysis. The optimal risky investment share defined in Equation (33) is

analyzed by Xia (2001) in a setup with constant stock-return volatility.11 We discuss the dependence

of the risky investment share and its hedging components on the state variables in Section 3.3.

The optimal attention defined in Equation (34) becomes a strictly increasing quadratic function

of uncertainty. We discuss the dependence of the investor’s attention on the state variables in

Section 3.2.

Although an indirect dependence of attention on the variance of stock returns, Vt, arises through

the function φ, the variance of stock return has no direct impact on the investor’s attention. In

Section 3.2 we show that the indirect impact of the return variance on attention is quantitatively

weak, as opposed to the impact of uncertainty and the predictive variable.

3 Numerical results

In this section, we investigate the determinants of optimal attention and risky investment share. We

first calibrate the parameters of the model. Then, we show that attention is a U-shaped function of

the predictive variable, a decreasing function of the stock-return variance, and an increasing function

of both the absolute value of the predictive coefficient and uncertainty. The risky investment share

increases with the Sharpe ratio of the stock and features a negative hedging demand that is hump-

11In Xia (2001), the risky investment share features additional terms resulting from the correlations between realized
returns and the predictive variable yt, and between returns and the predictive coefficient βt. These correlations are
set to zero in the present case. Note also that, although a similar decomposition appears in Xia (2001), the attention
level affects the shape of the value function, causing differences between the portfolio holdings obtained in the two
models.
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shaped in the predictive variable. Furthermore, the size of the hedging demand increases with

uncertainty and decreases with stock-return volatility.

3.1 Calibration

We calibrate the parameters of the model using three datasets. First, we consider the S&P 500

earnings-to-price ratio to be the predictive variable yt of S&P 500 returns rt.
12 This dataset is

at monthly frequency from 01/1950 to 12/2014, and is obtained from Robert Shiller’s website.13

The dynamics of the predictive variable provided in Proposition 1 imply that the long-term mean

of yt is ȳ, the long-term variance of yt is σ2
y/(2λy), and cov(yt+∆, yt)/var(yt) = e−λy∆, where

∆ = 1/12 = 1 month. Solving these three moment conditions yields the parameters ȳ, σy, and λy.

Second, we jointly estimate the long-term expected return µ̄ and the time-varying predictive

coefficients β̂t by performing multivariate 60-month rolling window regressions of 1-month-ahead

returns on current demeaned earnings-to-price ratios. That is, µ̄ and β̂t satisfy

rt+∆ =
[
µ̄+ β̂j∆+60∆(yt − ȳ)

]
∆ + εt+∆, t ∈ (j∆, j∆ + 59∆), (35)

where j = 0, . . . , N − 1 is the window’s index, N is the total number of windows, and εt is

a random variable with mean 0 and variance Vt∆. The dynamics of the predictive coefficient

provided in Proposition 1 imply that the long-term mean of β̂t is β̄, the long-term variance of β̂t

can be approximated by σ2
β/(2λβ), and cov(β̂t+∆, β̂t)/var(β̂t) = e−λβ∆. Solving these three moment

conditions yields the parameters β̄, σβ, and λβ.

Third, we compute the demeaned returns εt as follows

εj∆+61∆ = rj∆+61∆ −
[
µ̄+ β̂j∆+60∆(yj∆+60∆ − ȳ)

]
∆, (36)

and estimate their conditional variance Vt∆ by fitting a GARCH(1,1) model (Bollerslev, 1986). The

dynamics of the stock return variance provided in Proposition 1 imply that the long-term mean

of Vt is V̄ , the long-term variance of Vt is σ2
V V̄ /2λV , and cov(Vt+∆, Vt)/var(Vt) = e−λV ∆. Solving

12Several other predictive variables have been identified. They include past market returns, the dividend yield,
nominal interest rates, and expected inflation among others. See Goyal and Welch (2008) for a comprehensive survey.

13http://www.econ.yale.edu/ shiller/data.htm
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these three moment conditions yields the parameters V̄ , σV , and λV .

The estimated parameter values are provided in Table 1. In addition, we set the risk-free rate

to its historical mean rf = 5.08%. The cost parameter is k = 0.1, risk aversion is γ = 3, and the

subjective discount rate is δ = 0.01.

It is worth noting that the parameters λβ, β̄, and σβ imply that the predictive coefficient βt can

be both positive and negative.14 The predictive regression literature (e.g. Cochrane, 2008) finds

a relatively weak positive unconditional relation between future returns and the earnings-to-price

ratio with annual data; with monthly data (as in this paper), unconditional regressions are not

statistically significant at conventional levels (Stambaugh, 1999).15 In our conditional regressions,

the 60-month relationship between the earnings-to-price ratio and future returns shows both a

positive and negative direction of predictability, which may appear difficult to rationalize from an

economic point of view.

Although the objective of this paper is not to provide an economic story which rationalizes the

switching sign of the relationship between the earnings-to-price ratio and future returns, we briefly

discuss a plausible mechanism here. Consider an economy with time-varying and mean-reverting

macroeconomic uncertainty, populated by a representative agent with CRRA preferences and time-

varying risk aversion. Let us assume that the price dynamics in Equation (2) are determined in

general equilibrium by the representative agent. Furthermore, suppose that the risk aversion of the

representative agent is countercyclical, i.e., it is higher when macroeconomic uncertainty is high.16

In equilibrium, prices are affected by the income and substitution effects. Because of the counter-

cyclical risk aversion assumption, the income effect dominates during periods of high uncertainty

(i.e., the risk aversion of the representative agent is above one). In this case, the consumption

smoothing motive is strong and high uncertainty leads the investor to consume less and therefore

to save more (i.e. invest more in the stock), which implies high prices i.e. low earnings-to-price

ratios. Conversely, the substitution effect dominates during periods of low uncertainty (i.e., the

14The results are similar if we use the dividend-price ratio instead of the earnings-to-price ratio, or if we use the
inverse of the cyclically adjusted price-earnings ratio (CAPE).

15In our case, the unconditional relation is positive, but statistically insignificant.
16Fluctuations in economic uncertainty are well-documented (Bloom, 2009; Jurado, Ludvigson, and Ng, 2015).

Theoretical models with time-varying uncertainty include Veronesi (1999, 2000) and Andrei, Carlin, and Hasler (2017).
Time-varying risk aversion arises when investors derive utility form consumption relative to a habit (Campbell and
Cochrane, 1999), or when utility depends on recent investment performance relative to some historical benchmark
(Barberis, Huang, and Santos, 2001). Evidence for countercyclical risk aversion is provided in Cohn, Engelmann,
Fehr, and Maréchal (2015).
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Parameter Symbol Value

Mean-reversion speed of stock-return variance λV 1.9592
Long-term mean of stock-return variance V̄ 0.0158
Volatility of stock-return variance σV 0.1760
Mean-reversion speed of earning-to-price ratio λy 0.1163
Long-term mean of earning-to-price ratio ȳ 0.0686
Volatility of earning-to-price ratio σy 0.0136
Long-term expected return µ̄ 0.0685
Mean-reversion speed of β λβ 0.2151
Long-term mean of β β̄ 0.0021
Volatility of β σβ 0.9531

Table 1: Calibrated Parameter Values.

risk aversion is below one), and thus the investor is willing to forego present consumption to have

more in the future. Low uncertainty about future consumption leads the investor to consume less

and invest more in the stock, which again implies high prices i.e. low earnings-to-price ratios. In

this—admittedly stylized, but not unrealistic—example, when uncertainty mean-reverts, there is a

negative relation between the earnings-to-price ratio and future returns if the risk aversion switches

from above one (when uncertainty is high) to below one (when uncertainty is low). Conversely,

the relationship between the earnings-to-price ratio and future returns becomes positive in periods

where risk aversion remains either between zero and one or above one.17

Using the parameter values reported in Table 1, we numerically solve the partial differential

equation resulting from specification (31) by applying the Chebyshev collocation method (Judd,

1998). Further details are provided in Appendix B, where we specify the two boundary conditions,

we discuss the transversality condition (Merton, 1998), and finally we measure the accuracy of the

solution algorithm (which is of order 10−29).

3.2 Optimal attention

Four state variables impact the optimal attention: the predictive variable yt, the uncertainty νt, the

stock-return variance Vt, and the predictive coefficient β̂t. Since the predictive variable is the main

determinant of expected returns, we choose to plot the optimal attention against the predictive

17The above example relies on significant fluctuations of the elasticity of intertemporal substitution (EIS). The
value of this parameter is subject of ongoing debate (Epstein, Farhi, and Strzalecki, 2014). Quantitative assessments
of the EIS come from experimental evidence (Brown and Kim, 2013) or from field experiments on health outcomes
Thornton (2008). There are also several attempts to use actual data to estimate the EIS, and results differ widely.
Hall (1988) finds a value between zero and 0.2, whereas Hansen and Singleton (1983) estimate values between 0.5
and two; it is not uncommon to find values as high as 10 (Eichenbaum, Hansen, and Singleton, 1988).
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Figure 1: Impact of the predictive variable on attention.

The three panels depict the relation between attention and the predictive variable. We plot three
curves corresponding to three different levels of uncertainty in panel (a), return volatility in panel (b),

and the predictive coefficient in panel (c). If not stated otherwise, the state variables are β̂t = β̄ = 0,√
Vt =

√
V̄ = 12.6%, and νt = ν̄ = 2.11. Parameter values are provided in Table 1.

variable for different values of the other state variables.

Figure 1 reports plots for three different levels of uncertainty in panel (a), return volatility in

panel (b), and the estimated predictive coefficient in panel (c). The benchmark solid blue line is

obtained by setting νt, Vt, and β̂t to their long-term levels ν̄,
√
V̄ , and β̄.18

All three panels of Figure 1 confirm the intuition provided in Equation (34) that attention is a

U-shaped function of the demeaned predictive variable yt − ȳ. This is because when the predictive

variable is close to its long-term mean, the investor knows that the expected return is equal to µ̄

and therefore has weak incentives to pay for information. In contrast, when the predictive variable

is far from its long-term mean, there is a trend in expected returns that the investor can efficiently

exploit, but only if the predictive coefficient is accurately estimated. The investor’s optimal reaction

to this situation is to pay attention, efficiently exploit the trend, and profit from it.

Panel (a) of Figure 1 shows that uncertainty drives investor attention in two ways. First, it

increases the curvature of the U-shaped relation between attention and the predictive variable

through the presence of ν2
t in Equation (34). Second, it slightly increases the level of the U-shaped

18The long-term uncertainty ν̄ is determined by solving dν̄/ν̄ = 0 conditional on setting yt = ȳ, Vt = V̄ , and at = 0
in the dynamics of νt, which yields ν̄ = σ2

β/2λβ . This is an upper bound of uncertainty because all the sources of
information (i.e. the stock return, the predictive variable, the return variance, and the signal) are uninformative
when yt = ȳ and at = 0.
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relation between attention and the predictive variable. That is, higher uncertainty leads to higher

attention. This is because when uncertainty is close to zero, the investor observes the predictive

coefficient and feels no incentive to pay attention and learn about it. The greater the uncertainty,

the less accurate the investors’ estimates of the expected return, and therefore the larger their

incentive to pay attention to news.

Panel (b) of Figure 1 shows that an increase in stock-return volatility decreases the curvature

of the U-shaped relation between attention and the predictive variable. This is because an increase

in the return volatility generates less informative returns, which decreases the volatility of expected

returns (see Equation (21)). Because in this case trends are more difficult to detect, the convexity

of the value function in expected returns is less pronounced. Since the convexity of the value

function determines the curvature of the U-shaped relation between attention and the predictive

variable (see Equation (34)), more return volatility leads to a weaker curvature and therefore to

lower attention.19

Panel (c) of Figure 1 shows that an increase in the absolute value of the predictive coefficient

increases the curvature of the U-shaped relation between attention and the predictive variable.

This is because large positive or negative values of the predictive coefficient imply a high expected

return volatility (see Equation (21)). Higher expected return volatility implies more opportunities

to exploit trends, and thus a highly convex value function. This translates into a steeply curved U-

shaped relation between attention and the predictive variable, and therefore into greater attention

to news.

We now turn to the relation between attention and risk aversion, which is depicted in Figure 2.

Consistent with Equation (34), an increase in risk aversion scales down the level of attention. This

decreasing relation between attention and risk aversion comes from the fact that an increase in risk

aversion decreases the investor’s risky investment share (see the myopic component in Equation

(33)). The smaller the risky investment share, the lower the investor’s incentive to pay attention

to news.

19This prediction is similar to the “ostrich effect,” documented by Galai and Sade (2006), Karlsson, Loewenstein,
and Seppi (2009) and Sicherman et al. (2015). The “ostrich effect” states that investors prefer to pay attention to their
portfolios following positive news and “put their heads in the sand” when they expect to see bad news. Andries and
Haddad (2014) provide an alternative explanation. In their model, investors are “disappointment averse” and thus
are less attentive in riskier environments. In our case, riskier returns offer less marginal benefit for being attentive
because the expected return becomes less responsive to information. Note that the “ostrich effect” commonly refers
to attention to wealth (Abel, Eberly, and Panageas, 2007, 2013), whereas here we model investors’ attention to news.
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Figure 2: Impact of risk aversion on attention.

The figure depicts the relation between attention and the predictive variable for three different levels
of risk aversion. State variables are β̂t = β̄ = 0,

√
Vt =

√
V̄ = 12.6%, and νt = ν̄ = 2.11. Parameter

values are provided in Table 1.

Finally, we investigate the robustness of our results by performing a sensitivity analysis of the

optimal attention with respect to changes in the dynamics of the predictive variable. More precisely,

we analyze how attention responds to a change in the persistence and the volatility of the predictive

variable. Panels (a) and (b) of Figure 3 show that attention increases when both the persistence and

the volatility of the predictive variable decrease. This is because the persistence and the volatility

of the predictive variable determine the conditional volatility of its future values. When either

the persistence or the volatility is low, the conditional volatility of future values of the predictive

variable is low.20 Since the investor can efficiently exploit this “smoothness” to accurately predict

future returns only if her estimate of the predictive coefficient is accurate, her optimal reaction to

this situation is to pay more attention to news.

3.3 Optimal risky investment share

Figure 4 plots the optimal risky investment share against the predictive variable for different val-

ues of uncertainty in panel (a), stock-return volatility in panel (b), and the estimated predictive

coefficient in panel (c). The benchmark solid blue line is obtained by setting νt, Vt, and β̂t to their

20The conditional variance of future values of the predictive variable satisfies: Vart(ys) =
(

1 − e−2λy(s−t)
)
σ2
y/2λy.

This function is increasing in σy and decreasing in λy.
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Figure 3: Impact of the dynamics of the predictive variable on attention.

Panels (a) and (b) depict the relation between attention and the predictive variable for three different
levels of persistence of the predictive variable and its volatility, respectively. State variables are
β̂t = β̄ = 0,

√
Vt =

√
V̄ = 12.6%, and νt = ν̄ = 2.11. If not stated otherwise, parameter values are

provided in Table 1.

long-term levels ν̄,
√
V̄ , and β̄.

Panel (a) of Figure 4 shows that the risky investment share is a hump-shaped function of the

predictive variable and a decreasing function of uncertainty. This effect is driven by the hedging

demand

H∗t ≡ w∗t −
µ̂t − rf

γVt
=
νt(yt − ȳ)2

γVt

φµ
φ
< 0, (37)

which reflects the investor’s willingness to hedge against variations in expected returns.21 Since

returns and expected returns co-move positively (see Equations (11) and (19)), low returns imply

low expected returns which triggers a negative hedging demand. Furthermore, the larger the

expected return’s loading on return shocks, the more negative the hedging demand is. According

to Equation (19), this loading increases with both the predictive variable’s deviation from its mean

and uncertainty. That is, the hedging demand becomes more negative when both the predictive

variable’s deviation from its mean and uncertainty increase. This is confirmed by both Equation

(37) and panel (a) of Figure 4. In addition, Equation (37) shows that the hedging demand becomes

less negative when the stock-return volatility increases because the expected return’s loading on

return shocks is decreasing with the stock-return volatility.

21The hedging demand is negative because Jµ > 0 and J < 0 imply that φµ < 0 and φ > 0.
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Figure 4: Impact of the predictive variable on the risky investment share.

The relation between the risky investment share and the predictive variable. We plot three curves
corresponding to three different levels of uncertainty in panel (a), return volatility in panel (b),

and the predictive coefficient in panel (c). If not stated otherwise, state variables are β̂t = β̄ = 0,√
Vt =

√
V̄ = 12.6%, and νt = ν̄ = 2.11. Parameter values are provided in Table 1.

Panel (b) of Figure 4 shows that the risky investment share decreases with stock-return volatility

(see myopic component in Equation (33)). Furthermore, the risky investment share increases with

expected returns, which depend on the product of the predictive coefficient and the demeaned

predictive variable. That is, the risky investment share increases with the predictive coefficient

when the predictive variable is large and decreases with it when the predictive variable is small.

As panel (c) of Figure 4 shows, the risky investment share is large whenever the product β̂t(yt− ȳ)

is positive and large.

3.4 Cost of ignoring news

To quantify the benefits associated with paying attention to news, we compute the wealth certainty

equivalent of the optimal strategy relative to that obtained when ignoring news (Xia, 2001; Das and

Uppal, 2004; Liu, Peleg, and Subrahmanyam, 2010). That is, the cost of ignoring news is defined as

the additional fraction of wealth required by an investor who ignores the news signal—equivalently,

an investor who faces an infinite information cost—to reach the expected utility of an investor who

optimally pays attention to news.

Table 2 reports the cost of ignoring news for different values of risk aversion γ and information

cost parameter k. The cost of ignoring news decreases with both risk aversion and the information
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Cost parameter k →
Risk aversion γ ↓ 0.01 0.05 0.1

3 512.46 31.4 19.14
5 54.46 9.49 5.24
7 37.38 4.49 2.42

Table 2: Cost of ignoring news (in bps).

The cost of ignoring news represents the additional fraction of wealth required by an investor who
ignores the news signal to reach the expected utility of an investor who optimally pays attention to
news. State variables are β̂t = β̄ = 0, yt = ȳ = 6.9%

√
Vt =

√
V̄ = 12.6%, and νt = ν̄ = 2.11.

Parameter values are provided in Table 1.

cost parameter. A high risk aversion implies a small share invested in the stock and therefore a

weak incentive to pay attention to learn about the stock’s expected return (see Figure 2). As a

result, the optimal attention allocation strategy does not significantly differ from that of ignoring

the news signal, i.e., the cost of ignoring information is small. Furthermore, the lower the cost

parameter, the higher the optimal attention paid to news, and therefore the larger the cost of

ignoring news. The cost of ignoring news can be significant, reaching as much as 5.1% of wealth

when risk aversion and the information cost parameter are equal to 3 and 0.01, respectively.

4 Empirical analysis

In this section, we first show that there exists a positive and significant relation between the model-

implied and empirical measures of attention and risky investment share. Furthermore, we provide

evidence that attention significantly predicts the VIX. Then, we test the model’s predictions that

attention is a U-shaped function of the predictive variable, an increasing function of both the

absolute predictive coefficient and uncertainty, and a decreasing function of stock-return variance.

We show that the data lend support to these theoretical predictions.

In Section 3.1, we used three state variables to calibrate the parameters of the model: the

S&P 500 earnings-to-price ratio yt, the time-varying predictive coefficient β̂t, and the conditional

variance of returns Vt. Figure 5 illustrates the dynamics of these state variables, where the gray

shaded areas represent NBER recessions.

In order to obtain model-implied time series of attention and uncertainty, we first discretize the
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Attention a∗t Risky share w∗t Uncertainty νt
Intercept 0.037*** 0.288*** 2.085***

(16.38) (5.00) (1208.20)
Recession dummy 0.019*** −0.255*** −0.015***

(3.30) (−2.60) (−2.76)

R2 0.029 0.009 0.028
Observations 720 720 720

Table 3: Model-implied attention, risky investment share, and uncertainty in NBER
recessions.

a∗t , w∗
t , and νt are the model-implied measures of attention, risky investment share, and uncertainty,

respectively. Newey and West (1987) t-statistics are reported in brackets and statistical significance
at the 10%, 5%, and 1% levels is labeled with */**/***, respectively. Data are at monthly frequency
from 01/1955 to 12/2014.

dynamics of uncertainty in (16) as follows:

νt+∆ = νt +

[
−
(

(yt − ȳ)2

Vt
+ a∗t (µ̂t, yt, Vt, νt)

)
ν2
t − 2λβνt + σ2

β

]
∆, (38)

where ∆ = 1/12 = 1 month, µ̂t ≡ µ̄ + β̂t(yt − ȳ), the initial value is ν0 = ν̄ = σ2
β/(2λβ), and the

optimal attention a∗t (µ̂t, yt, Vt, νt) defined in (34) depends on the function φ(.) defined in (31). The

parameter values provided in Table 1 and the solution method described in Appendix B yield the

function φ(.). Therefore, using the initial value ν0 = ν̄ and sequentially substituting the values of

the state variables depicted in Figure 5 in Equations (33), (34), and (38) provides model-implied

time series for the risky investment share, attention, and uncertainty. These model-implied time

series are depicted in Figure 6.

We study the behavior of these model-implied quantities over the business cycle using NBER

recession dummies. Table 3 shows that the model-implied attention is larger in recessions than

in expansions. In recessions, the earnings-to-price ratio spikes and the predictive coefficient drops

to negative values to reflect negative expected returns. Investors optimally react to these changes

by paying more attention to news (as our theoretical model predicts in Figure 1). Attention is

therefore counter-cyclical, consistent with Andrei and Hasler (2014). Table 3 further shows that

investors place a smaller fraction of their wealth in the stock in recessions than in expansions, and

also that the model-implied uncertainty about the predictive coefficient is pro-cyclical, in line with

our theoretical prediction that higher attention tends to decrease uncertainty (see Equation (16)).

It is important to check whether the model-implied measures of attention, uncertainty, and risky
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Figure 5: Historical dynamics of the predictive variable, the predictive coefficient, and
the stock-return variance.

Data are monthly frequency from 01/1955 to 12/2014.

investment share are realistic, and thus we compare them to their corresponding empirical proxies.

To construct the empirical measure of attention, aEt , we select firms belonging to the Thomson-

Reuters institutional database (13F) that i) have a stock price larger than $5, ii) are older than one

year, iii) have a share code of 10 or 11 (i.e. U.S. firms), iv) have a market capitalization above $20

million, and v) have a trading volume larger than 100,000 shares per year. For each selected firm, we

obtain the quarterly 1) trading volume, 2) number of institutional owners, 3) number of earnings per

share (EPS) forecasts, and 4) number of EPS forecast revisions. The average number of firms that

satisfied the five aforementioned conditions each quarter from Q4/1983 to Q4/2014 is equal to 2,123.
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Figure 6: Historical dynamics of model-implied uncertainty, attention, and risky invest-
ment share.

Data are monthly frequency from 01/1955 to 12/2014.

Aggregating these firm-specific attention measures using June 30th market capitalizations provides

four aggregate non-stationary attention measures. We take the logarithm of these measures, remove

their linear time trends, standardize them for scaling purposes, and aggregate them using equal

weights. This provides our stationary empirical measure of investors’ attention. This time series is

at quarterly frequency from Q4/1983 to Q4/2014.

Our choice of the four attention variables defined above is motivated by the empirical literature.

First, Chordia and Swaminathan (2000), Lo and Wang (2000), Gervais, Kaniel, and Mingelgrin

(2001), Barber and Odean (2008), and Hou, Peng, and Xiong (2009) argue that trading volume

is a reasonable proxy for attention because investors must trade stocks they pay attention to. In
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addition, Fisher et al. (2016) provide evidence that media attention is closely related to trading

volume. Second, Boone and White (2015) show that the larger the number of institutional owners,

the higher the information production about the firm. That is, more institutional owners attracts

more attention. Third, Womack (1996) and Irvine (2004) show that analysts’ recommendations and

forecasts yield abnormal trading volumes. This suggests that more analyst coverage triggers more

attention. Finally, as argued by Jacob, Lys, and Neale (1999), the number of forecast revisions

measures analysts’ attention to recent news on the firm.

To construct the empirical measure of uncertainty, ηEt , we use the 1-month-ahead macro-

uncertainty index constructed by Jurado et al. (2015). This time series is at monthly frequency

from 08/1960 to 12/2014. Note that this macro-uncertainty index is a measure of macroeconomic

risk, whereas in our model νt is the Bayesian uncertainty regarding the predictive coefficient βt,

which measures learning inaccuracy rather than macroeconomic uncertainty. In our framework, a

measure of economic uncertainty comparable with the Jurado et al. (2015) index is the uncertainty

about expected returns ηt, which we define in Equation (20) of Lemma 1.

We proxy the empirical risky investment share, wEt by the negative of the log growth rate of

the “Institutional Money Funds” index. The “Institutional Money Funds” index represents the

dollar amount held by institutions in the money market. This index is at monthly frequency from

10/1978 to 12/2014, and it is obtained from the Federal Reserve Bank of St. Louis.

We then regress the empirical measures of attention, uncertainty, and risky investment share

on their model-implied counterparts. Table 4 shows the results. There is a strong positive rela-

tion between the empirical and model-implied measures of attention, even after controlling for the

autocorrelation in the empirical measure. This suggests that our model provides a realistic descrip-

tion of the dynamic attention allocation problem faced by investors. Furthermore, Table 4 shows a

strong positive relation between the empirical and model-implied measures of uncertainty, although

the relation loses significance after controlling for the autocorrelation in the empirical measure. As

in Jurado et al. (2015), our model-implied uncertainty about expected returns is counter-cyclical.

The correlation coefficient between the model-implied measure and the empirical measure is 0.6.22

Finally, Table 4 shows that the empirical and model-implied measures of the risky investment share

22In unreported results, we also find a strong positive correlation (0.52) between the model-implied measure of
uncertainty about expected returns and the VIX index.
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Attention Attention Uncertainty Uncertainty Risky share Risky share
aEt aEt ηEt ηEt wEt wEt

Intercept −0.370*** −0.077** 0.636*** 0.015 −0.017*** −0.007***
(−2.77) (−2.03) (152.1) (1.37) (−7.55) (−4.25)

a∗t 10.77*** 2.29**
(3.18) (2.00)

aEt−3/12 0.819***

(16.23)
η∗t 25.19*** 0.908

(10.5) (1.43)
ηEt−1/12 0.976***

(55.9)
w∗t 0.007*** 0.003***

(3.21) (2.63)
wEt−1/12 0.598***

(11.22)

R2 0.274 0.782 0.359 0.978 0.039 0.385
Observations 125 124 653 652 435 434

Table 4: Empirical vs. model-implied attention, uncertainty and risky investment share.

The variables aEt , ηEt , and wE
t denote the empirical measures of attention, uncertainty and risky

investment share, respectively. The variables a∗t , η∗t , and w∗
t denote the model-implied counterparts.

We report Newey and West (1987) t-statistics in brackets and label statistical significance at the
10%, 5%, and 1% levels with */**/***. Uncertainty and attention data are at monthly frequency
from 08/1960 to 12/2014 and at the quarterly frequency from Q4/1983 to Q4/2014. The monthly
model-implied attention a∗t is averaged over three consecutive months to obtain a quarterly measure.
Risky investment share data are at monthly frequency from 10/1978 to 12/2014.

are strongly positively related, even after controlling for the autocorrelation in the empirical mea-

sure. This result suggests that, in addition to accurately describing investors’ dynamic attention

behavior, our model also explains the dynamics of institutional investors’ risky investments.

We further test whether the model-implied and empirical measures of attention predict the

VIX index. As we show in Equation (21), attention is a proxy for the variance of expected returns,

which should imply a positive relation between current attention and future VIX. Table 5 shows

that this is indeed the case. Both the model-implied and empirical measures of attention positively

predict the VIX, even after controlling for the autocorrelation in the latter. That is, attention can

be interpreted as a measure of future market risk. This is also consistent with recent findings by

Fisher et al. (2016), who document that an increase in media attention positively relates to an

increase in implied volatility.
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VIXt VIXt VIXt VIXt

Intercept 0.153*** 0.029*** 0.196*** 0.059***
(12.70) (5.06) (18.48) (7.31)

a∗t−1/12 1.123*** 0.148*

(4.59) (1.95)
VIXt−1/12 0.823*** 0.700***

(20.03) (20.77)
aEt−1/12 0.040*** 0.008**

(7.42) (2.24)

R2 0.201 0.729 0.107 0.530
Observations 299 299 99 99

Table 5: The predictive power of attention on the VIX.

The variables aEt and a∗t denote the empirical and model-implied measures of attention, respec-
tively. We report Newey and West (1987) t-statistics in brackets and label statistical significance
at the 10%, 5%, and 1% levels with */**/***. Model-implied and empirical attention data are at
monthly frequency from 01/1990 to 12/2014 and at quarterly frequency from Q1/1990 to Q4/2014,
respectively.

4.1 Testing the predictions of the model

Our theoretical model predicts that investors’ attention is a U-shaped function of the predictive

variable, a decreasing function of stock-return variance, and an increasing function of uncertainty.

Furthermore, the risky investment share increases with the Sharpe ratio of the stock and features

a negative hedging demand, which depends on uncertainty, the predictive variable, and the stock-

return variance. In what follows, we describe and test the model’s predictions.

Prediction 1. Equation (34) and the results depicted in Figure 1 show that attention can be

approximated as follows:

at ≈ C0 + C1ν
2
t + C̃2(β̂, Vt)ν

2
t (yt − ȳ)2 ≈ C0 + C1ν

2
t + C2

|β̂t|
Vt
ν2
t (yt − ȳ)2, (39)

where C1 < 0 and C2 > 0. That is, the curvature of the U-shaped relation between attention and

the demeaned predictive variable decreases with the stock-return variance and increases with both

the absolute predictive coefficient and the squared uncertainty. In addition, the squared uncertainty

determines the level of the U-shaped relation.

Prediction 2. Equation (33) and the results depicted in Figure 4 show that the risky investment
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share can be approximated as follows:

wt ≈ K0 +K1
µ̄+ β̂t(yt − ȳ)− rf

Vt
+K2

νt(yt − ȳ)2

Vt
, (40)

where K1 > 0 and K2 < 0. That is, the risky investment share increases with the Sharpe ratio

of the stock and features a negative hedging demand that is hump-shaped in the demeaned predic-

tive variable. The curvature of the hedging demand decreases with the stock-return variance and

increases with uncertainty.

The coefficients C0, C1, C2, K0, K1, and K2 are estimated by ordinary least squares using

model-implied data to quantify the significance of these coefficients in our model on the one hand,

and using the empirical proxies to test the model’s predictions on the other hand. The left-hand

side of Equations (39) and (40) define the dependent variables, while the right-hand side define the

independent variables.

The first and second columns of Table 6 quantify Prediction 1 using model-implied attention

data. As expected, the coefficients C1 and C2 are negative and positive, respectively, and both

are highly statistically significant. Comparing the R2 obtained in these two columns shows that

adjusting the level of the quadratic relation between attention and the predictive variable with

the squared uncertainty only has a marginal impact on the goodness of fit. The third and fourth

columns test Prediction 1 using the empirical measure of attention. Consistent with the prediction

of the model, the curvature of the quadratic relation between attention and the predictive variable

decreases with stock-return variance and increases with both the absolute value of the predictive

coefficient and the squared uncertainty. In addition, the fourth column shows that, as for its

model-implied counterpart, the empirical attention decreases with the squared uncertainty. The

coefficient, however, is statistically insignificant, which implies that the R2 obtained in the fourth

column is only marginally larger than that obtained in the third column. This is in line with the

model’s prediction that adding the squared uncertainty as an independent variable does not have

a significant impact on the goodness of fit.

While we provide theoretical and empirical evidence of a quadratic relation between attention

and the earnings-to-price ratio, Fisher et al. (2016) show that there also exists a quadratic relation

between media attention and macroeconomic fundamentals.
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Attention a∗t Attention a∗t Attention aEt Attention aEt
Intercept 0.019*** 0.920*** −0.180 9.908

(16.94) (6.18) (−1.62) (1.40)
ν2
t −0.205*** −2.292

(−6.08) (−1.41)
|β̂t|
Vt
ν2
t (yt − ȳ)2 0.114*** 0.053*** 1.41*** 0.692***

(20.63) (4.72) (3.40) (3.33)

R2 0.713 0.810 0.247 0.273
Observations 375 375 125 125

Table 6: Model-implied and empirical measures of attention vs. predictive variable,
predictive coefficient, return variance, and uncertainty.

The variables aEt and a∗t are the empirical and model-implied measures of attention, respectively. We
report Newey and West (1987) t-statistics in brackets and label statistical significance at the 10%, 5%,
and 1% levels with */**/***. Model-implied and empirical attention data are at monthly frequency
from 10/1983 to 12/2014 and at quarterly frequency from Q4/1983 to Q4/2014, respectively. In the

fourth and fifth columns, the monthly model-implied predictive variable yt, predictive coefficient β̂t,
return variance Vt, and uncertainty νt are averaged over three consecutive months to obtain quarterly
measures.

Using model-implied data, the first and second columns of Table 7 quantify Prediction 2 and

confirm that the coefficients K1 and K2 are positive and negative, respectively. That is, the risky

investment share increases with the Sharpe ratio of the stock and features a negative hedging

demand. The second column also shows that the hedging demand is statistically insignificant in

our model. The third and fourth columns of Table 7 test Prediction 2 using the empirical proxy

for the risky investment share. Consistent with the model’s prediction, the empirical measure of

the risky investment share increases with the Sharpe ratio of the stock and features a negative

hedging demand that is hump-shaped in the predictive variable. Furthermore, the curvature of

the hump-shaped relation between the hedging demand and the predictive variable decreases with

stock-return variance and increases with uncertainty. Comparing the significance of the model-

implied hedging term (the second column of Table 7) with the significance of the empirical hedging

term (the fourth column of Table 7) shows that our model tends to underestimate the hedging

motives of institutional investors.

Finally, the model also provides a prediction on the conditional relation between attention and

the risky investment share. Indeed, Figures 1 and 4 suggest that large positive values of the product

β̂t(yt − ȳ) imply both high attention and a large positive risky investment share. Intuitively, when

expected returns are high, investors are highly attentive and increase their risky investment share.
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Risky share w∗t Risky share w∗t Risky share wEt Risky share wEt
Intercept 0.001 0.002 −0.017*** −0.007***

(0.13) (0.09) (−7.53) (−3.91)
µ̄+β̂t(yt−ȳ)−rf

Vt
0.337*** 0.337*** 0.003*** 0.002***

(48.51) (45.68) (2.83) (3.09)
νt(yt−ȳ)2

Vt
−0.002 −0.083***

(−0.01) (−5.39)

R2 0.970 0.970 0.044 0.217
Observations 435 435 435 435

Table 7: Model-implied and empirical risky investment share vs. Sharpe ratio and
hedging demand.

The variables wE
t and w∗

t are the empirical and model-implied measures of risky investment share,
respectively. We report Newey and West (1987) t-statistics in brackets and label statistical signifi-
cance at the 10%, 5%, and 1% levels with */**/***. Data are at monthly frequency from 10/1978
to 12/2014.

In contrast, large negative values of the product β̂t(yt− ȳ) imply high attention and a large negative

risky investment share (according again to Figures 1 and 4). This provides the testable Prediction

3 described below.

Prediction 3. The model predicts a positive relation between he risky investment share and atten-

tion when β̂t(yt − ȳ) is highly positive, and a negative relation when β̂t(yt − ȳ) is highly negative.

That is, the relation between the risky investment share and attention satisfies

wt = M0 +M1β̂t(yt − ȳ)at, (41)

where M1 > 0.

The first column of Table 8 quantifies Prediction 3 and shows that the coefficient K1 is, as

expected, highly significant in the model. Importantly, the second column of Table 8 tests the

prediction using our empirical proxies and shows that it finds empirical support.

5 Conclusion

This paper aims at understanding the dynamic attention behavior observed in financial markets.

In most of the existing literature, investors acquire information passively in the sense that they do

not control the quality of information they collect. In contrast, we consider an investor who can,
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Risky share w∗t Risky share wEt
Intercept 0.464*** −0.008***

(3.38) (−2.95)

β̂t(yt − ȳ)a∗t 198.50***
(3.94)

β̂t(yt − ȳ)aEt 0.175***
(4.41)

R2 0.488 0.075
Observations 375 125

Table 8: Model-implied and empirical relation between risky investment share and
attention.

The variables aEt and a∗t are the empirical and model-implied measures of attention, respectively.
The variables wE

t and w∗
t are the empirical and model-implied measures of risky investment share,

respectively. We report Newey and West (1987) t-statistics in brackets and label statistical signifi-
cance at the 10%, 5%, and 1% levels with */**/***. The second and third columns consider data at
monthly frequency from 10/1983 to 12/2014 and at quarterly frequency from Q4/1983 to Q4/2014,
respectively. In the third column, the monthly model-implied predictive variable yt and predictive
coefficient β̂t are averaged over three consecutive months to obtain quarterly measures.

at each point in time, improve the accuracy of acquired information at a cost.

Our analysis provides several interesting insights. The optimal level of attention paid to news

is a U-shaped function of the stock return predictor, an increasing function of uncertainty about

predictability, a decreasing function of stock-return volatility, and an increasing function of the

absolute predictive coefficient. In addition, the risky investment share increases with the Sharpe

ratio of the stock and features a negative hedging demand. The hedging demand is a hump-shaped

function of the return predictor, an increasing function of stock-return volatility, and a decreasing

function of uncertainty. We show that the data lends support to these theoretical predictions, and

conclude that empirically documented fluctuations in investors’ attention result from a rational

information gathering behavior.

Our analysis can be extended to a multiple asset setting, which would help understand the

impact of costly dynamic information acquisition on diversification. It would also be interesting to

investigate the impact of the optimal choice of attention on the equilibrium risk-free rate, equity

premium, and equity return volatility in a pure-exchange economy. Finally, a production economy

can offer insights on the impact of costly information acquisition on the dynamics of aggregate

consumption.
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Appendix

A Proof of Proposition 2

The dynamics of the vector of state variables Zt ≡ [µ̂t, yt, Vt, νt]
> satisfy

dZt = mtdt+ Σ1,tdB̂
⊥
1,t + Σ2,t

dB̂⊥2,tdB̂⊥3,t
dB̂⊥4,t

 , (42)

where the 4-dimensional vector of drift m, the 4-dimensional vector of diffusion Σ1, and the 4× 3
matrix of diffusion Σ2 satisfy

m =


(λy + λβ)

(
µ̄+

β̄λβ(y−ȳ)
λy+λβ

− µ̂
)

λy(ȳ − y)
λV (V̄ − V )

−
(

(y−ȳ)2

V + a
)
ν2 − 2λβν + σ2

β

 Σ1 =


(y−ȳ)2ν√

V

0
0
0

 (43)

Σ2 =


σy

µ̂−µ̄
y−ȳ 0 ν

√
a(y − ȳ)

σy 0 0

0 σV
√
V 0

0 0 0

 . (44)

The HJB equation satisfies

0 = −δJ + max
c,a,w

(
u(ct) +DW,ZJ

)
, (45)

where DW,Z is the infinitesimal generator such that23

DW,ZJ =J ′Zm+ JW

[
(rf −K(at))Wt + wtWt

(
µ̂t − rf

)
− ct

]
(46)

+
1

2
JWWW

2
t w

2
t Vt +

1

2
tr
[
(Σ1Σ′1 + Σ2Σ′2)JZZ

]
(47)

+Wtwt
√
VtΣ

′
1JWZ . (48)

Differentiating (23) partially with respect to the control variables yields the first order conditions:

0 = uc − JW (49)

0 = JWWt(µ̂t − rf ) + JWWW
2
t Vtwt + JWµWtνt(yt − ȳ)2 (50)

0 = −K ′(at)JWWt − ν2
t Jν +

1

2
ν2
t (yt − ȳ)2Jµµ. (51)

Solving the first order conditions yields Proposition 2.

23Note that, for notational convenience, we drop hats when state variables appear as indices.
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B Numerical solution method

B.1 Chebyshev collocation

Substituting K(x) = kx2, u(x) = x1−γ

1−γ , and the first order conditions (49)-(51) in Equation (45)
yields a partial differential equation (PDE) for the value function J(W, µ̂, y, V, ν). Then, using the

conjecture J(W, µ̂, y, V, ν) = W 1−γ

1−γ φ(µ̂, y, V, ν) provides a PDE for the function φ(µ̂, y, V, ν).
Since the state variables µ̂t and yt belong to the real line by definition, they do not imply

boundary conditions. In contrast, the dynamics of Vt and νt imply that Vt = 0 and νt = 0 can be
approached but not attained, implying two boundary conditions. When either Vt = 0 or νt = 0,
the investor observes the expected return µt and the predictive coefficient βt. This immediately
implies that µ̂t ≡ µt, νt = 0, and at = K(at) = 0.

Writing the HJB equation using the dynamics of Wt, µt, yt, and Vt, substituting the first order
conditions, and conjecturing the solution

J|ν=0(W,µ, y, V ) =
W 1−γ

1− γ
φ|ν=0(µ, y, V ), (52)

yields a 3-dimensional PDE for φ|ν=0(µ, y, V ). By definition, the solution J|ν=0(W,µ, y, V ) is the
boundary condition at ν = 0.

Similarly, setting Vt = 0 in the dynamics of Wt, writing the HJB equation using the dynamics
of Wt, µt, and yt, substituting the first order conditions, and conjecturing the solution

J|V=0(W,µ, y) =
W 1−γ

1− γ
φ|V=0(µ, y), (53)

yields a 2-dimensional PDE for φ|V=0(µ, y). By definition, the solution J|V=0(W,µ, y) is the bound-
ary condition at V = 0.

The PDE for φ(µ̂, y, V, ν) is solved numerically using the Chebyshev collocation method (Judd,
1998). That is, we approximate the function φ(µ̂, y, V, ν) as follows:

φ(µ̂, y, V, ν) ≈ P (µ̂, y, V, ν) =
I∑
i=0

J∑
j=0

K∑
k=0

L∑
l=0

ai,j,k,lTi (µ̂)Tj (y)Tk (V )Tl (ν) ,

where Tm is the Chebyshev polynomial of orderm. The interpolation nodes are obtained by meshing
the scaled roots of the Chebyshev polynomials of order I+ 1, J + 1, K+ 1, and L+ 1. We scale the
roots of the Chebyshev polynomials of order I + 1, J + 1, K + 1, and L + 1 such that they cover
the intervals µ̂ ∈ [qµ̂,1%, qµ̂,99%], y ∈ [qy,1%, qy,99%], V ∈ [0, qV,99%], and ν ∈ [0, qν,99%], respectively.
Note that qx,p% stands for the p percentile of the process x. The polynomial P (µ̂, y, V, ν) and its
partial derivatives are then substituted into the PDE, and the resulting expression is evaluated at
the interpolation nodes. This yields a system of (I+ 1)× (J + 1)× (K+ 1)× (L+ 1) equations with
(I + 1)× (J + 1)× (K + 1)× (L+ 1) unknowns (the coefficients ai,j,k,l) that is solved numerically.
The mean squared PDE residual computed over the set of 180 interpolation nodes is of order 10−29.

B.2 Transversality, feasibility, and optimality conditions

We define the function F (c, a, w) as follows:

F (c, a, w) ≡ −δJ + u(ct) +DW,ZJ, (54)
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where DW,Z is provided in (48). Equation (45) can therefore be rewritten as

max
c,a,w

F (c, a, w) = 0. (55)

As argued in Merton (1998), a solution to problem (23) must satisfy

1. the transversality condition

lim
t→∞

E
(
e−δtJ(Wt, µ̂t, yt, Vt, νt)

)
= 0, (56)

2. the sufficient condition for a maximum

Hessian of F (c, a, w) ≡

Fcc Fcw Fca
Fwc Fww Fwa
Fac Faw Faa

 has only negative eigenvalues, (57)

3. and the two feasibility conditions

• c∗t ≥ 0

• a∗t ≥ 0.

The first order conditions of (55) are

Fc = 0 = uc − JW (58)

Fw = 0 = JWWt(µ̂t − rf ) + JWWW
2
t Vtwt + JWµWtνt(yt − ȳ)2 (59)

Fa = 0 = −K ′(at)JWWt − ν2
t Jν +

1

2
ν2
t (yt − ȳ)2Jµµ. (60)

From this, we immediately obtain

Fcw = Fwc = Fca = Fac = Fwa = Faw = 0, Fcc = ucc < 0 (61)

because the utility function u(.) is concave by definition. Furthermore, the value function satisfies

J(Wt, µ̂t, yt, Vt, νt) =
W 1−γ
t

1− γ
φ(µ̂t, yt, Vt, νt). (62)

Therefore, we have

Fww = JWWW
2
t Vt = −γW 1−γ

t φ(µ̂t, yt, Vt, νt)Vt, (63)

Faa = −K ′′(at)JWWt = −2kW 1−γ
t φ(µ̂t, yt, Vt, νt). (64)

Since the Hessian of F (c, a, w) is a diagonal matrix, the diagonal elements are the eigenvalues. This
implies that the sufficient condition for a maximum is satisfied if φ(µ̂t, yt, Vt, νt) > 0 (see Equations
(63) and (64)). φ(µ̂t, yt, Vt, νt) > 0 also implies that the first feasibility condition is satisfied (see
Equation (32)).

Simulations show that both φ(µ̂t, yt, Vt, νt) and attention a∗t are strictly positive, with mini-
mums equal to about 8, 000 and 1%, respectively. Therefore, the two feasibility conditions and
the sufficient condition for a maximum are satisfied. In Figure 7, we depict the behavior of
E
(
e−δtJ(Wt, µ̂t, yt, Vt, νt)

)
with respect to time t, which we obtain via simulations. This figure
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Figure 7: Transversality condition.

Initial state variables are W0 = 1, β̂0 = β̄ = 0, y0 = ȳ = 6.9%,
√
V0 =

√
V̄ = 12.6%, and

ν0 = ν̄ = 2.11. Parameter values are provided in Table 1.

shows that the transversality condition is also satisfied, and therefore that our solution indeed
solves the investor’s maximization problem (23).

C Alternative information cost specification

Let us assume the following more general information cost function

Kt = k1a
k2
t W

k3
t , (65)

where k1 > 0 and k2 > 1. Setting k1 = k, k2 = 2, and k3 = 1 yields the quadratic form specification
from Section 2.4.

The general cost function (65) is ex ante independent of wealth if k3 = 0, decreasing with wealth
if k3 < 0 (i.e. information gets cheaper as time passes), and increasing with wealth if k3 > 0 (i.e.
information gets more expensive as time passes). Note that k2 has to be larger that 1 in order to
obtain a maximum (see first equality in Equation (64)).

At the optimum, we obtain

a∗t =

(
1

2k1k2

)1/(k2−1)
(
ν2
t

(
(yt − ȳ)2Jµµ − 2Jν

)
JW

)1/(k2−1)

W
−k3/(k2−1)
t , (66)

K
∗
t = k1

(
1

2k1k2

)k2/(k2−1)
(
ν2
t

(
(yt − ȳ)2Jµµ − 2Jν

)
JW

)k2/(k2−1)

W
−k3/(k2−1)
t . (67)

We are interested in the effect of the parameter k3 on our qualitative results. In order to do so,
we approximate (66) by taking a first order Taylor expansion around k11 = 0, where the parameter
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k11 is defined as

k11 ≡
(

1

2k1k2

)1/(k2−1)

, (68)

and thus does not depend on k3. The parameter k11 converges to zero as k1 → ∞. In this case,
the cost of information is infinite and therefore the investor does not pay attention to news i.e. the
news signal st has zero precision. The first order Taylor expansion of attention around k11 = 0
yields

a∗t ≈

(
ν2
tW

−k3
t

(
(yt − ȳ)2Jµµ − 2Jν

)
JW

)1/(k2−1)
∣∣∣∣∣∣
k11=0

× k11. (69)

When the investor does not pay attention to news (k11 = 0), we know that the value function
is homogeneous in wealth and thus it takes the following functional form

J(Wt, µ̂t, yt, Vt, νt) =
W 1−γ
t

1− γ
G(µ̂t, yt, Vt, νt), (70)

where the function G(.) solves a 4-dimensional PDE. Substituting this in the first term of (69), the
optimal attention and the ex post cost of information are

a∗t = k11H(µ̂t, yt, Vt, νt)
1/(k2−1)W

(1−k3)/(k2−1)
t , (71)

K
∗
t = k1k

k2
11H(µ̂, y, V, ν)k2/(k2−1)W

(k2−k3)/(k2−1)
t (72)

for some function H(.).
This implies that both attention and the ex post cost of information increase with wealth if

k2 > k3 and k3 < 1, and decrease with wealth if k2 < k3. If k2 > k3 and k3 > 1, then the cost of
information increases with wealth, whereas attention decreases with it. The figure below illustrates
these three cases.

k3

0 1 k2

k3 < 1 1 < k3 < k2 k3 > k2

a∗ ↑, K∗ ↑ a∗ ↓, K∗ ↑ a∗ ↓, K∗ ↓

For a fixed amount of wealth, attention described here and attention described in the main
body of the paper are driven by the state variables in the same way. The reason is that the signs
and sensitivities of the partial derivatives JW , Jµµ, and Jν are qualitatively the same here and
in the main body of the paper (refer to the end of Section 2.3 for a discussion on these partial
derivatives). We expect therefore that the qualitative implications of our paper remain unchanged
(given a fixed amount fo wealth) under a more general cost function specification such as (65).
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