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Liquidity as Social Expertise

PABLO KURLAT∗

ABSTRACT

This paper proposes a theory of liquidity dynamics. Illiquidity results from asymmet-
ric information. Observing the historical track record teaches agents how to interpret
public information and helps overcome information asymmetry. However, an illiquid-
ity trap can arise: too much asymmetric information leads to the breakdown of trade,
which interrupts learning and perpetuates illiquidity. Liquidity falls in response to
unexpected events that lead agents to question their valuation models (especially
in newer markets) may be slow to recover after a crisis, and is higher in periods of
stability.

THIS PAPER PROPOSES A THEORY OF MARKET LIQUIDITY and its evolution over time.
This theory is based on the interaction between information asymmetry and
social learning.

Liquidity is an elusive concept, with the literature on it plagued by challenges
of both definition and measurement.1 In this paper, I refer to the following
notion of liquidity: The liquidity of an asset class is the fraction of the potential
gains from trade in that asset class that are realized in equilibrium. If the
potential gains from trade are large, it is tautologically true that asset liquidity
has important consequences for social welfare.

The theory in this paper is based on a minor modification of an otherwise
standard model of trade under asymmetric information in the spirit of Akerlof
(1970). The assumption is that rather than being purely uninformed, asset
buyers have access to some information, but their ability to make use of that
information depends on their collective experience, which I refer to as “social
expertise.” The model abstracts from the specific features of the assets that are
traded. However, to fix ideas, it is useful to think about the model as applying
to markets such as the market for initial public offerings (IPOs), the primary
market for asset-backed securities, or the primary market for sovereign bonds.
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The model works as follows. Each period, “sellers” own assets of heteroge-
neous quality that are independent over time. These assets are more productive
if held by “buyers” rather than sellers, so there are gains from trade. Sellers
know the asset qualities but buyers cannot observe them, so a classic lemons
problem arises.

Buyers can alleviate their information disadvantage by observing public,
asset-specific signals. However, for these signals to be useful, buyers need to
know how signals correlate with asset qualities. The key assumption in the
model is that the joint distribution of signals and asset qualities, summarized
by the single parameter μ, is not known exactly. Agents can learn about μ from
commonly observed data, based on a sample of past assets. For each of them,
the data contain the signal it produced when it was created and an indicator
for how it turned out. The idea is that agents turn to the historical track record
in making sense of the information available on any given asset, which is stan-
dard practice among financial analysts. For instance, the popular textbook by
Damodaran (2008) provides guidance on the use of “comparables” to determine
which pieces of information about a particular asset one should focus on and
shows how to use them in valuation. One of the challenges, in practice, is find-
ing a sufficiently large and sufficiently similar sample of historical precedents.
In terms of the model, the question is at what rate are observations added to
the historical sample. I assume that this rate depends positively on the volume
of trade, a form of learning-by-doing.

The model delivers several predictions about the relationship between infor-
mation, trading, and liquidity. The first result is that if information asymmetry
is sufficiently severe, liquidity is increasing in the precision of agents’ estimates
of μ. Knowing μ increases traders’ ability to extract information from signals,
reducing the degree of information asymmetry and increasing liquidity. Hence,
liquidity is a function of traders’ expertise. Asset prices, the level of investment,
and the volume of trade are increasing in liquidity.

Depending on parameters, the model may feature an “illiquidity trap.” If at
any point in time, estimates of μ are sufficiently imprecise, assets will be com-
pletely illiquid and trade will break down. If the learning process is such that
data only are generated by trading, markets will generate no data for agents
to learn from, which will perpetuate the illiquidity. Whether the economy falls
into an illiquidity trap depends on the sample realizations during the first few
periods. If the first observations lead to precise and correct estimates of μ, this
will increase liquidity and reinforce the learning process, which becomes self-
sustaining. If instead the first observations lead to imprecise estimates of μ

because they conflict with each other or with agents’ prior, signals will become
uninformative, which will lead to the illiquidity trap. Even under parameters
such that there is no permanent illiquidity trap, market liquidity can be slow
to recover after a disruption.

The model also predicts that markets will tend to become more liquid over
time, as traders accumulate more observations with which to estimate μ. In the
short run, unexpected events disrupt liquidity because they increase buyers’
uncertainty as to whether they are using the correct model (i.e., the correct
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value of μ) to evaluate assets. This increases information asymmetry and low-
ers liquidity. Furthermore, unexpected events will be more disruptive in newer
markets, where traders have not had time to accumulate a long track record of
observations and thus revise their beliefs more strongly in light of new infor-
mation.

I next extend the model to allow the structure of the economy, as captured by
μ, to change over time. In this case, unexpected events will be more common
in times of structural change and therefore liquidity will be higher when the
underlying economy is more stable. Even in the long run, liquidity will remain
fragile.

The dynamics of the model follow from positive feedback between learning
and trading. The fact that trading generates observations to learn from is sim-
ply an assumption, though I provide examples of underlying models that could
give rise to it. The main contribution of the paper is to show how, despite the fact
that asset payoffs are independent over time, past observations can generate
useful expertise that alleviates information asymmetry and increases liquidity.

This paper relates to several strands of literature. First, it builds on the
literature following Akerlof (1970) on how asymmetric information can cre-
ate barriers to trade (Wilson (1980), Kyle (1985), Glosten and Milgrom (1985),
Levin (2001), Attar, Mariotti, and Salanié (2011)). The main contribution rela-
tive to this literature is to explore the effect of more precise knowledge about
the information structure on trade in a simple model that is quite close to
Akerlof ’s (1970) basic setup.

Second, the paper relates to a large literature on social learning. The form of
learning of interest here, namely, learning that is dependent on economic ac-
tivity, has been studied by Veldkamp (2005), van Nieuwerburgh and Veldkamp
(2006), Ordoñez (2009), and Fajgelbaum, Schaal, and Taschereau-Dumouchel
(2014). These stories focus on agents who need to learn the level of aggregate
productivity to make production and investment decisions. This paper focuses
instead on agents who learn the right way to evaluate assets, and studies the
consequences this has for market liquidity. The mechanics of the illiquidity
trap are also related to the informational cascades studied by Banerjee (1992)
and Caplin and Leahy (1994).

Finally, the paper contributes to the literature on the sources of liquidity
fluctuations. These include theories based on asymmetric information (Daley
and Green (2012), Cespa and Foucault (2014), Dang, Gorton, and Holmström
(2015), Daley and Green (2016)), theories based on Knightian uncertainty or
non-Bayesian learning (Hong, Stein, and Yu (2007), Caballero and Krishna-
murthy (2008), Routledge and Zin (2009), Uhlig (2010)), and theories based
on balance sheet effects (Shleifer and Vishny (1992), Holmström and Tirole
(1997), Kiyotaki and Moore (1997), Brunnermeier and Pedersen (2009)). In my
model, the liquidity of an asset class can fluctuate even though all agents are
Bayesian, none are financially constrained, and the distribution of payoffs for
the asset class remains unchanged.

The rest of the paper is organized as follows. Section I describes the model.
Section II characterizes the static outcomes of the model. Section III presents
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the main results on liquidity dynamics and Section IV offers some final re-
marks. Appendix A contains proofs, while Appendix B provides microfounda-
tions for the learning mechanism.

I. The Model

A. Agents, Endowments, and Technology

There are two types of agents, sellers and buyers. Each lives for only one
period (when I introduce dynamics, I study the continuous time limit where
the period is short). Both types of agents have large endowments of the con-
sumption good and are risk neutral.

There is a measure 1 + λ of sellers: a measure one are endowed with one
unit of capital and a measure λ are endowed with one “lemon,” which looks like
capital but is useless. I refer to capital and lemons collectively as “assets.” A
seller who is endowed with capital may (within the period) use a unit of capital
to produce Z consumption goods, where Z is a nonnegative random variable,
which is distributed i.i.d. across sellers and over time according to a contin-
uous distribution F. The law of large numbers applies, so F also represents
the distribution of Z among sellers. After production, capital depreciates com-
pletely. Buyers are not endowed with capital but have access to a technology
that produces θ consumption goods with one unit of capital.

ASSUMPTION 1: F(θ ) = 1.

Assumption 1 says that sellers are always less productive than buyers. A
social planner would want all capital to be operated by buyers.

B. Information

Each seller knows whether he holds capital or a lemon, but this is not ob-
servable to either buyers or other sellers. However, each asset emits a publicly
observable signal s, which takes one of two possible values, A and B, according
to the conditional probabilities

Pr[s = A|Capital] = Pr[s = B|Lemon] = μ,

Pr[s = B|Capital] = Pr[s = A|Lemon] = 1 − μ. (1)

The variable μ is itself random, realized at the beginning of time but initially
unknown to the agents, drawn according to

μ =
{

μ̄ with probability g0
1 − μ̄ with probability 1 − g0,

(2)

where μ̄ ∈ (0.5, 1).
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Occasionally, after its payoff is realized, an asset will emit an additional
“ex-post” public signal z ∈ {H, L} with the conditional probabilities

Pr[z = H|Capital] = Pr[z = L|Lemon] = γ,

Pr[z = L|Capital] = Pr[z = H|Lemon] = 1 − γ, (3)

where γ ∈ (0.5, 1) is a known parameter. When an ex-post signal z is published,
agents can contrast it to the original signal s to update their beliefs about
μ. Each cohort can observe the entire history of past {s, z} pairs. They can-
not, however, observe the quantity of A- and B-labeled assets that trade. The
publication of ex-post signals takes place randomly over time at an aggregate
endogenous Poisson rate φt.

ASSUMPTION 2: Let xt be the fraction of capital that sellers trade at time t. The
rate φt is given by φt = φ(x) where φ(·) is an increasing function.

C. Discussion of Assumptions

The labels “seller” and “buyer” are meant to be interpreted broadly as a pair
of agents for whom there are gains from trade. For instance, in the context of
IPOs, the gap θ − Z between their respective productivities can represent the
gains from diversification and not just literally higher output. In the context of
sovereign debt, it can represent the gains from intertemporal trade.

The assumption that μ is not initially known is meant to capture the idea
that market participants might not know which model to apply to a particular
asset class. Uncertainty about μ represents uncertainty about how to translate
information into valuations. If μ = μ̄, then equation (1) implies that signal A
is more likely to come from a unit of capital and signal B is more likely to come
from a lemon, but the reverse holds if μ = 1 − μ̄. I assume this formulation,
where signals reverse their meaning depending on the value of μ, to make
things stark. There are types of information for which this type of assump-
tion does not make much sense, surely the signal “this company increased its
profits” is a better signal than “this company reduced its profits,” even if one
is not sure by how much. For more ambiguous types of information, however,
this assumption can make more sense. Suppose the signal is “this company
has had fast growth but low profit margins.” Is this a good or a bad sign? In
this particular industry, is it easy to raise profit margins without choking off
growth? Would one instead be more optimistic about a slower growing firm that
had healthier profit margins? Furthermore, the symmetric formulation has the
desirable feature that, for someone who knew the real value of μ, signals would
be equally informative no matter what this value was, the only determinant
of their actual informativeness is the extent to which agents know the correct
way to use the information. This formulation is a parsimonious way of model-
ing the idea that uncertainty about μ (and not the value of μ itself) lowers the
information content of signals.
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In using this type of information, it is helpful to have a long track record
of initial signals and eventual outcomes. This is the notion of expertise that
the model explores: expertise comes from having a sufficiently large historical
database that it is possible to estimate μ precisely. Expertise is “social” in the
sense that the historical database is assumed to be publicly available.2

The two signals s and z play different roles in the model. The original signal
s is a composite of hard-to-interpret public information about an asset that is
available at the time it trades. In the context of an IPO, s represents the content
of the company’s prospectus, analyst reports about its industry, the biography
of its founders, etc. The ex-post signal z represents the information that is
publicly available after the asset trades, for instance, the company’s financial
statements for the first few years after the IPO. While these latter signals
might also not be definitive about whether the company turned out to be a good
investment (in terms of the model, γ is less than 1), they have the advantage
that there is less ambiguity about how to interpret them. Since it is too late to
use this information for trading the asset that generated it, agents only use it
to update their valuation models for the next asset that comes along.3

Assumption 2 is the key driver of the model’s dynamics. It says that there
is a form of learning-by-doing that depends on the volume of trade. More than
one possible mechanism may give rise to this. Appendix B provides three ex-
amples. In the first, there is a small cost of producing the original signals s. For
instance, the cost of s could represent the cost of preparing a detailed prospec-
tus for an IPO or a bond issuance. In equilibrium, only sellers that plan to
sell their asset incur the cost of producing s. Ex-post signals z could represent
subsequent financial statements by the issuing firm, and the example assumes
for simplicity that these are free. The number of {s, z} pairs that are observed
depends on the number of s signals produced, which depends on the volume
of trade. In the second example, the signals are assumed to be produced by
intermediaries who buy and then resell assets, and in equilibrium disclose
their information due to the unraveling logic of Milgrom (1981) and Grossman
(1981). Again, the quantity of {s, z} pairs that results depends on the volume of
trade. In the third example, all assets are assumed to produce both ex-ante and
ex-post signals but the volume of investment is endogenous. Better information
means investors obtain a higher average value from their assets, which leads
to higher investment, trade, and information flow.

2 One example that might be familiar to some readers arises in graduate student admissions.
Imagine a recommendation letter for an undergraduate from a university without a track record of
students going on to graduate school saying “this is the second best student I have ever had in my
class.” Without knowing how talented the other students were, how trustworthy the letter-writer
is, etc., it is hard to extract much information from this signal. If, instead, there have been many
students from the same background, the informational content of the letter is much greater.

3 Of course, this information will be reflected in secondary markets for the asset, but the focus
here is on the primary market. Brown (2015) emphasizes the importance of post-IPO information
production, though he focuses on the usefulness of information for the firm’s decision-making
rather than for providing feedback to IPO investors.
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Modeling time as continuous (i.e., taking the limit as each period is short)
is for simplicity and does not make much difference for any of the results.
The main advantage of this modeling choice is that it allows one to model the
ex-post signals as a Poisson process, which ensures that they arrive one at a
time even if φ is very high. This avoids the slightly more complicated Bayesian
updating formula that would arise if more than one ex-post signal is observed
in the same period.

II. Static Equilibrium

A. Equilibrium Definition

Since all agents are short-lived, it is possible to define an equilibrium of
the static economy that takes place each period. The equilibrium will depend
on the beliefs about μ that agents have upon entering the period. As is well
known (Wilson (1980), Hellwig (1987)), there is more than one way to formulate
a competitive equilibrium in environments with asymmetric information. In
particular, the formulation depends on whether the sellers can signal their
type, for instance, by committing to retain a fraction of the asset. The definition
here implicitly assumes they cannot do so.

Since lemons are useless, sellers who own a lemon will sell it at any positive
price. Sellers who own capital will sell it if the price they can get is greater than
their own productivity. Letting ps denote the equilibrium price conditional on
signal s, a seller will sell capital if Z < ps. Buyers will make zero profits upon
buying A- or B-labeled assets if the following conditions hold:

pA = E[μI(Z < pA)]
E[μI(Z < pA) + λ(1 − μ)]

θ, (4)

pB = E[(1 − μ)I(Z < pB)]
E[(1 − μ)I(Z < pB) + λμ]

θ. (5)

In equations (4) and (5), the numerator is the expected number of s-labeled
units of capital sold by sellers and the denominator is the expected number of
s-labeled assets (capital plus lemons) sold.4 Equations (4) and (5) could have
multiple solutions.

DEFINITION 1: An equilibrium consists of {pA, pB} that are equal to the highest
solution of equations (4) and (5), respectively.

Notice that the quantities of A- and B-labeled assets that are traded depend
on the realized value of μ, since that determines how many units of capital
and lemons end up carrying each label. The definition of equilibrium implicitly
assumes that buyers stand ready to absorb however many units are put up
for sale at the equilibrium price. The requirement that prices correspond to

4 These are expected because the true value of μ is uncertain.
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the highest solution requirement can be derived formally by assuming that
there are markets at every possible price and agents select at which prices to
trade, as in Kurlat (2016), or by deriving the equilibrium from a game-theoretic
formulation with nonexclusive competition, as in Attar, Mariotti, and Salanié
(2011).

B. Equilibrium Characterization

Since Z is independent of the realization of μ, (4) and (5) can be rewritten
as:

pA = μ̂F(pA)
μ̂F(pA) + λ(1 − μ̂)

θ, (6)

pB = (1 − μ̂)F(pB)
(1 − μ̂)F(pB) + λμ̂

θ, (7)

where μ̂ ≡ E(μ).
Notice two features of equations (6) and (7), both of which follow from the

binary distribution. First, beliefs about μ enter prices only through their mean
μ̂, that is, μ̂ is a sufficient statistic for the problem of inferring whether an
asset is a lemon. Agents interpret signals as though they knew that the value
of μ was equal to μ̂. Second, equations (6) and (7) are symmetric, meaning that
beliefs μ̂ and 1 − μ̂ lead to the same prices, except that which price corresponds
to which signal is reversed. When μ̂ > 0.5, we have pA ≥ pB, and vice versa.

DEFINITION 2: The informativeness of signals given beliefs about μ is τ ≡ 2|μ̂ −
0.5|.

The informativeness measure τ is scaled so that τ = 0 means signals convey
no information and τ = 1 means they convey perfect information. The first case
arises when μ̂ = 0.5, so each signal is believed to be equally likely to arise from
capital or lemons; the second arises when μ̂ = 0 or μ̂ = 1, so signals perfectly
reveal the type of asset that generates them. Given the symmetry of equations
(6) and (7), equilibrium outcomes depend on τ and not on whether μ̂ is above
or below 0.5.

Substituting the definition of τ into equations (6) and (7), it immediately
follows that the two equilibrium prices (denoted by pH(τ ) and pL(τ )) are, re-
spectively, the highest solutions to equations

pH = (1 + τ )F(pH)
(1 + τ )F(pH) + λ(1 − τ )

θ, (8)

pL = (1 − τ )F(pL)
(1 − τ )F(pL) + λ(1 + τ )

θ. (9)
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From an ex-ante point of view, without knowing the true value of μ, the total
value that sellers obtain from their assets is

V (τ ) = λ

[
1 − τ

2
pH(τ ) + 1 + τ

2
pL(τ )

]
︸ ︷︷ ︸

value from selling lemons

+ 1 + τ

2

⎡
⎢⎢⎢⎢⎢⎢⎣

F(pH(τ ))pH(τ )

︸ ︷︷ ︸
if sold

+
∫

Z≥pH (τ )

ZdF (Z)

︸ ︷︷ ︸
if retained

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
value of capital with more favorable signal

+ 1 − τ

2

⎡
⎢⎢⎢⎢⎢⎢⎣

F(pL(τ ))pL(τ )

︸ ︷︷ ︸
if sold

+
∫

Z≥pL(τ )

ZdF (Z)

︸ ︷︷ ︸
if retained

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
value of capital with less favorable signal

. (10)

LEMMA 1:

1. The ex-ante value of assets is in between the autarky value and the first-
best value: V (τ ) ∈ [E(Z), θ ].

2. Under full information, the ex-ante value of assets is the first best value:
V (1) = θ .

3. If the following condition holds,

F(p)
F(p) + λ

θ < p for all p > 0, (11)

then
(a) pL(τ ) = 0.
(b) There exists an informativeness cutoff τ ∗ > 0 such that, for τ ≤ τ ∗, we

have pH(τ ) = 0, and for τ > τ ∗, pH(τ ) is strictly increasing in τ .
(c) If signals are not informative, the ex-ante value of assets is the autarky

value: V (0) = E(Z).
(d) The ex-ante value of assets V (τ ) is increasing in informativeness τ .

In autarky, the total value of the assets for sellers is E(Z), that is, the ex-
pected output they can obtain from the assets on their own. In the first-best
allocation, the value of the assets is θ , the output buyers can obtain from them.
Part 1 of Lemma 1 states that, not surprisingly, the value that sellers obtain in
equilibrium is somewhere in between these two extremes (by assumption, buy-
ers always obtain zero surplus). Part 2 states that the upper bound is reached
in the limit of perfect informativeness.
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Figure 1. An example in which condition (11) does not hold. At low levels of informative-
ness, more informativeness lowers the value for sellers. The example uses λ = 0.3, θ = 1, and
Z ∼ U [0, 1]. (Color figure can be viewed at wileyonlinelibrary.com)

Part 3 of Lemma 1 gives a sufficient condition for more-informative signals to
increase sellers’ value. As Levin (2001) points out, this is not a general feature:
it is not always the case that giving the less-informed buyer more information
increases efficiency. Figure 1 shows an example where condition (11) does not
hold and V (τ ) is decreasing for some range of τ .

What happens in the example is that more-informative signals make the
good signal better (leading to a higher price and less inefficient retention by
sellers) and the bad signal worse (leading to a lower price and more inefficient
retention). In general, the net effect could go either way. Condition (11), which
holds if λ is sufficiently high, implies that when signals are uninformative
(τ = 0), there is no positive solution to equations (6) and (7), so the price is zero
and no capital trades. This, in turn, implies that pL = 0 for any τ . Hence, under
condition (11), trade can take place only if signals are sufficiently informative,
and only upon observing the good signal. Therefore, there is no harm in making
bad signals worse since they would lead to no trade anyway. In this case, it is
indeed true that more informative signals lead to higher gains from trade.5

In what follows, I assume that condition (11) holds. This means that the
model pertains to situations in which the adverse selection problem is so severe
that, with purely uninformed buyers, trade would break down.

DEFINITION 3: The level of liquidity is V (τ )−E(Z)
θ−E(Z) .

I define the liquidity of assets as the fraction of the potential gains from trade
that are realized. Illiquidity, conversely, is the loss of value that results from

5 The fact that trade breaks down is sensitive to the assumption that assets are of only two
kinds and the value of lemons is exactly zero. Hendren (2013) discusses what is the equivalent of
condition (11) with a continuous distribution.
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asymmetric information. Under this definition, liquidity is not an attribute of
the assets themselves but rather of the entire equilibrium. Lemma 1 implies that
if condition (11) holds, liquidity is increasing in the informativeness of signals.
Furthermore, the fraction of capital that will be traded is

x(τ ) = F(pH(τ ))
1 + τ

2
, (12)

which is also increasing in informativeness and therefore positively associated
with liquidity.

The key to the relationship between informativeness and liquidity is the en-
dogeneity of sellers’ decision of whether to sell their asset. Imagine that, instead
of selling being an endogenous decision, a fixed fraction α of sellers who hold
capital were to sell their asset, irrespective of what signal it issued, their own
productivity and the equilibrium price. Then equilibrium prices would be:

pA = μ̂α

μ̂α + λ(1 − μ)
θ,

pB = (1 − μ̂)α
(1 − μ̂)α + λμ̂

θ,

and the total value that sellers obtain would be

V (τ ) = λ[μ̂pB + (1 − μ̂)pA]︸ ︷︷ ︸
value from selling lemons

μ

⎡
⎢⎣α pA︸︷︷︸

if sold

+ (1 − α)E(Z)︸ ︷︷ ︸
if retained

⎤
⎥⎦

︸ ︷︷ ︸
value of capital with A signal

+ (1 − μ)

⎡
⎢⎣α pB︸︷︷︸

if sold

+ (1 − α)E(Z)︸ ︷︷ ︸
if retained

⎤
⎥⎦

︸ ︷︷ ︸
value of capital with B signal

= αθ + (1 − α)E(Z),

so the assets’ liquidity would not depend on the informativeness of signals. The
reason that informative signals enhance liquidity is that, by aligning prices
with assets’ value-in-best-use, they reduce inefficient asset retention by sellers.

III. Dynamics

The only link between different periods in the economy comes from the evo-
lution of beliefs about μ, which depend on the history of {s, z} pairs that are
publicly observed. At any given point in time, beliefs about μ can be sum-
marized by gt = Prt(μ = μ̄). Using Definition 2 and equation (2), the resulting
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informativeness of signals is given by

τt = 2|gtμ̄ + (1 − gt)(1 − μ̄)|
= 4|gt − 0.5|(μ̄ − 0.5).

Maximal informativeness is reached when the value of μ is known (gt = 1 or
gt = 0). In this case, informativeness is equal to

τ̄ ≡ 2(μ̄ − 0.5).

As gt approaches 0.5, informativeness decreases, and becomes zero when gt =
0.5.

ASSUMPTION 3: pH(τ̄ ) > 0.

Assumption 3 says that the maximal informativeness τ̄ is sufficiently high
that if agents knew the value of μ, this would result in trade at positive prices.
In the absence of this assumption, assets would always be completely illiquid.6

The evolution of beliefs gt is easy to characterize. Beliefs are revised when-
ever an ex-post signal z is observed from some asset and remain constant
in the intervals in between. Whenever an ex-post signal is observed, agents
will compare it with the original signal s. Letting m be the indicator of the
event {s, z} ∈ {{A, H} ∪ {B, L}}, its conditional probability is Pr[m|μ] = ω(μ) ≡
μγ + (1 − μ)(1 − γ ). Letting ω̄ ≡ ω(μ̄), ω̄ − 0.5 measures the information con-
tent of ex-post signals for inferring μ. It is increasing in γ because more accurate
ex-post signals provide more feedback about the correct interpretation of the
original signals. By Bayes’s rule, the posterior upon observing an ex-post signal
is

g′
t = [ω̄m(1 − ω̄)1−m]gt

[ω̄m(1 − ω̄)1−m]gt + [ω̄1−m(1 − ω̄)m](1 − gt)
. (13)

The model’s dynamics follow from Assumption 2, which says that the Poisson
arrival rate of ex-post signals depends on the volume of trade x. Since by
equation (12), trading volume depends on informativeness τ , it is possible to
express the arrival rate of signals simply as a function of τ :

φ(τ ) ≡ φ(x(τ )).

Since φ(x) and x(τ ) are increasing, φ(τ ) is increasing as well.
Depending on parameters, the model may have the feature that when τ is

sufficiently low, no learning will take place, which implies that τ will remain
low. I refer to this outcome as an illiquidity trap.

DEFINITION 4: There is an illiquidity trap if φ(τ ) = 0 for sufficiently low τ .

6 Assumption 3 can be stated directly in terms of the primitives of the model as

max
p

(1 − τ̄ )F(p)(θ − p) − pλ(1 − τ̄ ) > 0.
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If condition (11) holds, trade breaks down for sufficiently low τ . If, in addition,
φ(x) = 0 for x = 0 (i.e., only traded assets generate ex-post signals), the model
will feature an illiquidity trap. If, instead, φ(x) > 0 for all x (because retained
assets also generate ex-post signals, even if infrequently), an illiquidity trap
will not obtain. The examples in Appendix B include two cases in which φ(τ )
gives rise to an illiquidity trap and one case in which it does not.

The mechanics of the illiquidity trap are similar to the information cascades
described by Banerjee (1992), though the logic is somewhat different. Here, the
learning process may be interrupted not because agents stop paying attention
to information, but rather because trade collapses and no further information
is generated. This is closer to the mechanism studied by Caplin and Leahy
(1994), who show that inertia in decision-making can also interrupt the flow of
information.

A. Short-Run Dynamics

Turn now to the short-run dynamics of the model, assuming there is no
illiquidity trap. The first result says that, on average, informativeness increases
over time.

PROPOSITION 1: Suppose there is no illiquidity trap. Then, for any t′ > t,
E(τt′ |τt) > τt.

Proposition 1 provides a characterization of how the learning dynamics
evolve in the short run. The law of iterated expectations implies that beliefs
gt must be a martingale; since informativeness τ is a convex function of gt, in
expectation, it increases. On average, new observations push beliefs toward
either gt = 0 or gt = 1, increasing agents’ confidence in their estimates of μ and
increasing liquidity. This explains how markets become more mature. As mar-
ket participants’ experience increases, they are better able to use the available
information, which increases valuation accuracy, alleviates information asym-
metry, and increases liquidity. This is the sense in which liquidity is a function
of social expertise, which accumulates as observations are added to the publicly
available historical track record.

Whenever g �= 0.5, one of the two possible values of μ is considered more
likely, and thus some realizations of {s, z} are more likely than others.

DEFINITION 5: An observation {s, z} is unlikely if either (i) g > 0.5 and {s, z} ∈
{{A, L} ∪ {B, H}} or (ii) g < 0.5 and {s, z} ∈ {{A, H} ∪ {B, L}}.

An unlikely event contradicts the model of the world that the agents think is
more likely to be correct. Liquidity will react differently to likely and unlikely
events, especially if the level of informativeness required for trade is large.

DEFINITION 6: τ ∗ is large if

τ ∗ > τ̄

(
ω̄

1−ω̄

)0.5 − 1(
ω̄

1−ω̄

)0.5 + 1
. (14)
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Condition (14) relates the cutoff level of informativeness required for posi-
tive liquidity τ ∗ to the information content of any given observation ω̄. If the
condition holds, then no single ex-post observation carries sufficient informa-
tion to overturn agents’ beliefs to the point that markets remain liquid while
reversing which of the two signals is considered good. The model is very stark
in that there are only two possible models of the world, one in which μ = μ̄ and
one in which μ = 1 − μ̄. Condition (14) guarantees that questioning one model
cannot lead to immediately adopting the other with a sufficiently high degree
of confidence that markets remain liquid. In a limit where each single piece of
information is small (with ω̄ close to 0.5), condition (14) always holds: evidence
against the preferred model leads to uncertainty before it leads to adoption of
the alternative model, which implies that τ ∗ is large. The cutoff τ ∗ can fail to
be large only if information comes in sufficiently large discrete pieces.

PROPOSITION 2: If τ ∗ is large, then:

1. If liquidity is positive, an unlikely observation leads to lower liquidity.
2. Starting from any beliefs, there is a finite n such that a sequence of n

unlikely observations will make assets completely illiquid.
3. The number of unlikely observations needed to make assets completely

illiquid is increasing in τt.

Assets are more liquid the more agents understand (or think they under-
stand) the information structure of the economy. When unlikely events take
place, they cast doubt on whether agents are using the right valuation model
to guide their actions. The increased uncertainty reduces liquidity by mak-
ing the information asymmetry between sellers and buyers more pronounced.
Proposition 2 shows that this effect makes asset liquidity fragile: a sufficiently
unlikely sequence of observations will push beliefs from levels that support
positive liquidity to levels at which assets are completely illiquid. The more
confidence that agents have to begin with, the less their beliefs will be swayed
by contradictory information and therefore a greater number of unlikely events
are necessary to render markets illiquid. Given that, by Proposition 1, τt tends
to increase over time, this predicts that market liquidity tends to become less
fragile when markets are more mature. Several studies document this feature
of market maturation. For instance, Buckley (1997a, 1997b) describes how this
took place in emerging market debt markets and Anderson and Gascon (2009)
do so for the commercial paper market.

The result relies on τ ∗ being large, but only in a technical sense. If τ ∗ is not
large, then there are values of τ such that any observation, even an unlikely
one, increases liquidity, but only if liquidity was very low to begin with.

Proposition 2 establishes that, holding parameter values fixed, if assets are
more liquid, this liquidity will be less fragile in response to unlikely events.
Comparing across different parameter values, the same level of liquidity can
be more or less fragile depending on the exact circumstances that give rise
to it.
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PROPOSITION 3: Suppose there are two otherwise identical economies that differ
in μ̄ and gt so that informativeness τt = 4|gt − 0.5|(μ̄ − 0.5) is the same in both.
An unlikely observation will make liquidity fall more in the economy with higher
μ̄ and lower |gt − 0.5|.

Informativeness depends on (i) how informative signals would be if agents
knew the information structure (as measured by the maximal informativeness
τ̄ = 2(μ̄ − 0.5)) and (ii) how confident agents are that they know the true value
of μ (as measured by |gt − 0.5|). Proposition 3 shows that liquidity is more
resilient to unlikely events when it results from a high degree of certainty about
the information structure, even if the signals themselves are less informative.
In contrast, a market in which the signals, properly interpreted, carry a lot of
information but the right value of μ is uncertain faces more illiquidity-inducing
surprises. This implies that, even controlling for how liquid they are at a given
point in time, liquidity in more mature markets is less fragile.7

The link between surprising events in relatively new markets and the on-
set of financial crises has been emphasized by Caballero and Krishnamurthy
(2008) and Caballero and Kurlat (2009). One historical example of this dy-
namic at play is the bankruptcy of Penn Central in 1970. Penn Central was a
large issuer of commercial paper, which was a relatively new asset class, total
outstanding issues having risen from about $10 billion to about $40 billion in
four years. According to Schadrack and Breimyer (1970), sellers mistakenly
believed that paper issued by large corporations was safe, so when Penn Cen-
tral filed for bankruptcy in June 1970, this came as a large surprise. According
to the account by Calomiris (1993, p. 13), it then became “necessary for the
market to reevaluate its methods for pricing paper generally in light of this
surprising event.” The resulting uncertainty led to a freeze in new issues of
commercial paper, with the outstanding stock falling by about 10% in the first
month after Penn Central’s bankruptcy.

A more recent example is the reaction of the asset-backed securities market
to the downturn in the housing market. Foote, Gerardi, and Willen (2012) cite
financial industry reports around 2005 that discuss different scenarios for the
performance of the various tranches of mortgage-backed securities. The most
pessimistic scenarios in these reports (labeled “meltdown” in one of them) far
underestimate the losses that materialized in the following years. In other
words, the housing crisis was considered an unlikely event. As documented by
Adrian and Shin (2009) and Brunnermeier (2008), issuance of all kinds of asset-
backed securities fell almost to zero when this unlikely event materialized in
2008.8

7 The converse of Proposition 3 is also true. Holding τt constant, a likely observation will raise
liquidity more in the less mature economy with higher μ̄ and lower |gt − 0.5|. If a mature market
in which μ is known with high precision is not very liquid, adding more observations to the sample
will not improve liquidity much, even if they are consistent with what agents believe. Instead, in
a less mature market, an observation that confirms agents’ beliefs will significantly increase the
precision of their estimates of μ, leading to a larger increase in liquidity.

8 Caballero and Krishnamurthy (2008) describe a similar pattern following the stock market
crash of 1987, the LTCM crisis in 1998, and the terrorist attacks of September 11, 2001.
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Through the lens of the model, these episodes can be interpreted as follows.
Before the onset of each crisis, sellers believed that they had reliable (high
μ̄) indicators of asset quality (the size of the corporation issuing the commer-
cial paper, credit ratings for mortgage-backed securities). Asset buyers were
therefore confident that they were not at a large information disadvantage and
markets were liquid, that is, most of the potential gains from trade were real-
ized. Then, the unexpected events took place. Since the markets were relatively
new (in model terms, gt had not had time to converge all the way to zero or one
yet), the unexpected events could not be dismissed as outliers, which led sellers
to question their valuation models. Without confidence in a valuation model,
the logic of asymmetric information took over and markets became illiquid, at
least until confidence in a revised valuation model was built up.

In the above examples, the unlikely events are also bad events: assets that
were expected to be good were revealed to be bad. However, what matters in
light of the model is not that the news was bad, but rather that the news con-
tradicted traders’ prior, leaving them confused. Still, mostly negative surprises
are consistent with what one would expect from the model. Traded assets are
more likely to produce ex-post signals and, under condition (11), only assets
with signals believed to be good trade. Therefore, most ex-post signals will come
from assets that were originally believed to be good and most surprises will be
unpleasant ones.

Negative surprises would have bad consequences even in a frictionless mar-
ket. However, they would not necessarily lead to sharp drops in trading vol-
ume, just to lower prices. The breakdown of trading is consistent with a model
with underlying information asymmetry. Dang, Gorton, and Holmström (2015)
study a slightly different mechanism, also based on asymmetric information,
through which a negative surprise can lead to illiquidity. Debt-like securities
become more information-sensitive when they are closer to default, so com-
monly observed bad news increases the importance of noncommonly observed
pieces of information, possibly leading to the breakdown of trade. In any given
instance, it is hard to distinguish empirically which of the two mechanisms is
at play since they both lead to the same basic prediction, and both forces could
be operating at once. However, they do have some different implications that
could be used to tell the mechanisms apart. First, the two mechanisms have
different predictions about how the volume of trade reacts to negative news
about aggregate fundamentals. Suppose buyers’ productivity θ and all sellers’
productivity Z fell in the same proportion. It is immediate from equation (8)
that pH would fall by the same proportion and from equation (12) that the
fraction of capital traded would be unchanged. Unlike bad news about realiza-
tions of assets thought to be good, this type of bad news would have no effect
on volume. Instead, if the underlying issue was the information sensitivity of
debt-like securities, volume of trade would react to anything that moved be-
liefs toward the information-sensitive region, even if the relative valuations
of buyers and sellers were unaffected. Second, in principle, one could look for
instances of positive surprises. These should not lead to illiquidity if the un-
derlying mechanism is the information sensitivity of debt-like securities but
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would lead to illiquidity if they led traders to distrust their valuation models.
The difficulty with this is that if the model is correct, surprises should tend
to be negative ones. Finally, one could look at markets that have the opposite
payoff profile as debt securities, such as in-the-money convertible preferred
shares. These become less information sensitive following bad news. If nega-
tive surprises lead to lower liquidity in these types of markets, that would be
consistent with the view that traders have lost confidence in their valuation
models.

Daley and Green (2012, 2016) study a related mechanism through which
bad news leads to illiquidity. They consider a dynamic trading environment in
which sellers have the option to retain an asset, while they wait for the market
to receive more news about the asset’s quality. In this environment, it is also
true that prices fall and sellers of good assets choose not to sell in response to
bad news, so liquidity (in the sense of the fraction of realized gains from trade)
falls. Indeed, they also find a region of beliefs such that trade stops completely,
although in their setting, it is because the option value of waiting for good
news raises sellers’ reservation prices, while in my setting, it is because under
condition (11), the static model has a breakdown of trade. Daley and Green
focus on a setting with only one asset, or with many identical assets, so that
any news pertains to the payoff of that asset. In my setting, given that payoffs
are i.i.d. over time, simply observing assets’ payoffs does not provide buyers
with useful information. Rather, it is the track record of ex-ante and ex-post
signal pairs that allows them to learn about μ for the entire asset class and it
is this knowledge, combined with the ex-ante signals of the current generation
of assets, that provides useful information.

Another interpretation that has been proposed is that markets’ reaction to
negative surprises is related to some form of non-Bayesian assessment. Rout-
ledge and Zin (2009) model an uncertainty-averse intermediary setting bid-ask
spreads optimally, and show how extreme events can lead to large declines in
market liquidity. Hong, Stein, and Yu (2007) explore the asset pricing impli-
cations of “paradigm shifts” in a not fully Bayesian learning model in which
investors base forecasts on a misspecified univariate model and reject it in fa-
vor of another one when the forecast errors are large. Uhlig (2010) studies how
bank runs take place in a model in which the potential buyers of bank assets
are uncertainty-averse. Caballero and Krishnamurthy (2008) study a model
in which traders’ Knightian uncertainty triggers a flight to quality. In these
Knightian environments, public policy can play a valuable role. If the govern-
ment can design a way to insure traders against the worst-case scenario they
are afraid of, then it can restore market confidence, possibly without making
losses. Instead, if the market breakdown is caused by increased information
asymmetry, merely insuring against tail events will not do much. The govern-
ment can still intervene to restore trade (for instance, by outright purchases at
above-market prices), but this will require absorbing losses.

Another mechanism through which negative surprises can lead to de-
clines in liquidity works through balance sheets. Shleifer and Vishny (1992),
Kiyotaki and Moore (1997), Holmström and Tirole (1997), and Brunnermeier
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and Pedersen (2009), among others, study environments in which specialized
traders in a particular asset are financially constrained. Since they hold the as-
set on their balance sheet, their constraints tighten if there is a negative shock
to the asset. This diminishes their ability to carry out or intermediate trades,
and hence reduces the asset’s liquidity. In these environments, transfers to the
constrained traders can restore liquidity. For this channel to matter, the asset
in question must have a large weight in traders’ portfolio. Instead, if the effect
works through information asymmetry and a loss of confidence in valuation
models, the weight of the asset in traders’ portfolio would not be relevant and
transfers to traders would not help.

B. Long-Run Outcomes

The long-run properties of the model depend on whether there is an illiquidity
trap and, if so, on initial conditions and the size of the trap.

PROPOSITION 4:

1. If there is no illiquidity trap, then informativeness will reach its maxi-
mum, that is, τt →a.s. τ̄ for any initial beliefs g0.

2. If there is an illiquidity trap and τ0 ≤ τ ∗, then the economy will remain
in the trap, that is, τt = τ0 for all t.

3. If there is an illiquidity trap, τ ∗ satisfies condition (14), and τ0 > τ ∗, then
the economy will either reach maximum informativeness or fall into the
trap. The probability that it reaches maximum informativeness can be
bounded by:

lim
t→∞ Pr[τt ≥ τ̄ − ε] ∈

[
τ0 − τ ∗

τ̄ − τ ∗ ,
τ0 + τ ∗

τ̄ − ε + τ ∗

]
(15)

for any ε > 0.
4. If there is an illiquidity trap but τ ∗ does not satisfy condition (14), then

there are values of τ0 > τ ∗ such that limt→∞ Pr[τt ≤ τ ∗] > 0 and values of
τ0 > τ ∗ such that Pr[τt ≤ τ ∗] = 0 for all t.

Proposition 4 establishes the conditions under which assets eventually be-
come as liquid as possible or fall into the illiquidity trap. Part 1 says that if
parameters are such that there is no illiquidity trap, then learning always
takes place. Eventually, large samples will accumulate and agents will learn
the value of μ perfectly. Informativeness will converge to its maximal level τ̄

and so will liquidity. Part 2 says that if there is an illiquidity trap and the econ-
omy begins in that state, then learning never takes place and assets will remain
illiquid, that is, the economy will repeat the initial period static equilibrium
forever.

If there is an illiquidity trap but the economy begins outside it, some learning
will take place at first. Since the sequence of realizations that agents learn from
is random, there is a positive probability that it leads beliefs gt toward 0.5. Parts
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3 and 4 distinguish between two possibilities. Part 3 says that if the illiquidity
trap is large, then as gt approaches 0.5, the economy will fall into the trap, so
the probability of falling into it is positive no matter what the initial beliefs
were. Part 4 says that if the trap is not large, a single observation may lead
beliefs to jump across the illiquidity trap; in this case, there are initial beliefs
such that no sequence of observations leads into the trap. Conversely, if initial
observations lead gt away from 0.5, liquidity increases, and there is a positive
probability that it converges to τ̄ . The probabilities that τt falls into the trap or
converges to τ̄ can be bounded. Condition (15) says that the closer the economy
begins to the edge of the illiquidity trap, the higher the probability that it will
fall into it, while the further away from the illiquidity trap it begins, the more
likely it is to avoid it.9

The reason for the possibility of two long-run outcomes is that the model
features a form of dynamic strategic complementarities in trading decisions.
Higher trading at date t results in a higher rate of learning, which leads over
time to more precise estimates of μ and therefore more informativeness. This
informativeness sustains higher levels of trading and learning. Due to this
complementarity, there is path dependence: randomness in the early stages of
the learning process may have long-term consequences for how financial mar-
kets develop, a feature of many models with complementarities. This suggests
a possible role for government intervention to get the learning cycle started (or
restarted if it starts but then enters the illiquidity trap), for instance, by sub-
sidizing the early stages of the financial industry. This is not unlike other “big-
push” policies based on learning-by-doing externalities (see Easterly (2006) for
a skeptical look at this type of argument).

The relationship between measures of market volume and liquidity has been
the subject of a large empirical literature (Easley, Kiefer, and Paperman (1996),
Chordia, Roll, and Subrahmanyam (2001), Amihud (2002)). The positive asso-
ciation is often attributed to some form of thick market effect through easier
search or increased competition. Here, the effects are through information
asymmetry and are both static and dynamic. The static effect is standard:
information asymmetry interferes with trade, lowering volume and liquidity.
Glosten and Milgrom (1985), Kyle (1985), and indeed Akerlof (1970) examine
aspects of this effect.

The dynamic effect comes from the learning-by-doing assumption: higher
volume leads to more learning, which leads to lower information asymmetry
and higher liquidity in future periods. A related dynamic effect is at play in
the model analyzed by Glosten and Milgrom (1985). In that model, traders
learn from observing whether the previous trader chose to buy at the ask
price, sell at the bid price, or not trade, which partly reveals that trader’s
information. In that world, it is also true that trading volume determines
the speed of learning and future information asymmetry. The key difference
between the mechanisms is that Glosten and Milgrom (1985) assume that

9 This probability can also be computed exactly, but the value depends on ω̄. The bounds in (15)
hold for any ω̄.
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trades are observable, whereas I assume that they are not. Which assumption
is more appropriate depends on the application. Observability is probably a
good assumption for relatively centralized markets with transparent record-
keeping, such as the stock market, but less so for other contexts. By assum-
ing that trades are not observable, I focus on information that is produced
as a by-product of trade, for instance, through the mechanisms described in
Appendix B. Note that, in my setting, if traders could perfectly observe how
many A-labeled assets are actually sold, they could then infer how many of
them were lemons, and from this, they would infer μ exactly since there is no
other source of noise.

The learning-by-doing mechanism at the heart of the model is similar to
that assumed by Veldkamp (2005), van Nieuwerburgh and Veldkamp (2006),
Ordoñez (2013), and Fajgelbaum, Schaal, and Taschereau-Dumouchel (2014),
all of whom assume that there is an association between the level of economic
activity and the rate at which agents learn. This literature focuses on the prob-
lem of agents who need to learn the level of aggregate productivity to make
production and investment decisions. Fajgelbaum, Schaal, and Taschereau-
Dumouchel (2014) combine this idea with the assumption of irreversible in-
vestment and show that such a model can generate uncertainty traps, where
investment is persistently low. Just like the illiquidity traps I describe, there
are two parts to this logic: a link from uncertainty to a lack of investment and
a link from a lack of investment to a lack of learning. The latter works the
same way in both models. The former works differently. The uncertainty trap
model relies on the option value of waiting, so it is well suited to thinking about
physical investment, where irreversibility is a natural assumption. Instead, the
illiquidity trap relies on the logic of Akerlof (1970), so it is well suited to think-
ing about environments in which information asymmetries are important, even
if there are no irreversibilities, as is arguably the case for financial assets. Note
also that uncertainty about productivity (i.e., about θ ) would have no effect on
the model. Buyers are risk neutral, so formulas (6) and (7) would still apply,
with E(θ ) replacing θ . Good news about θ would increase the gains from trade
and equilibrium prices but the resolution of uncertainty per se would not be
important.10 For instance, one would not expect systematic increases in activ-
ity after the release of aggregate economic data the way one would under the
uncertainty logic. Instead, one should expect trade to increase following the
release of ex-post performance indicators of recently traded individual assets.

More broadly, models in which agents learn about aggregate fundamentals
have different implications for the relationship between learning and the vol-
ume of trade depending on how the reasons for trading are modeled. For in-
stance, if trade results from (price-sensitive) noise traders, then when rational
traders learn precise information about fundamentals, they become more will-
ing to accommodate noise trader demand at a smaller price impact, which will
increase the total volume of trade. Conversely, in models in which trade results

10 And, as discussed above, equally good news about θ and the seller’s productivity Z would just
scale everything up without affecting the volume of trade.
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from differences in traders’ priors, learning about fundamentals will reduce
the scope of disagreement and therefore the volume of trade.

Learning in the model has a time dimension: traders observe signals and
update their beliefs, and these beliefs affect trading behavior in future periods.
A related literature (Admati (1985), Cespa and Foucault (2014), Chabakauri,
Yuan, and Zachariadis (2016)) has studied multiasset noisy rational expecta-
tions models, in which learning has a cross-sectional dimension: observing the
prices of asset A is informative about asset B. Cespa and Foucault (2014) show
that, in such a model, a decrease in liquidity in the market for asset A makes
its price less informative about asset B and, in turn, lowers asset B’s liquidity.
This is a similar link between trading in one market and liquidity in another,
except on a cross-sectional rather than temporal dimension. There are three
main differences between this mechanism and the dynamic feedback that I
study. The first is more technical than substantive: the dynamic learning chan-
nel is fundamentally asymmetric, with learning affecting future markets but
not past markets. This means that, instead of involving a fixed point with all
the markets at once, the model can be solved by carrying a state variable that
represents the current state of knowledge. Given the simplicity of formulation
(2), this is just a scalar with an easily derived law of motion. Second, in noisy
rational expectations models, the relationship between trading volume and in-
formation generation could go in either direction, depending on what drives the
variation. If the variation is driven by traders’ risk aversion, there is a positive
association: less risk-averse traders trade more aggressively on their informa-
tion, which increases volume and makes prices more informative. Instead, if
the variation is driven by the volume of noise traders, there is a negative asso-
ciation: more noise traders lead to higher volume but less informative prices.
In contrast, I assume that trading activity itself is what generates information,
so the association is positive by assumption. Finally, the cross-market learn-
ing mechanism in the noisy rational expectations models is driven by the fact
that asset payoffs are correlated. In my setting, since the object that agents
are learning about is a parameter of the information structure instead of the
payoff of a particular asset, learning it is useful in future periods even though
the assets themselves are i.i.d.

Figure 2 provides an example where the economy may or may not fall into an
illiquidity trap depending on the initial observations. In this example, the fre-
quency of observations φ is proportional to the total volume of trade x, so that
if trade breaks down, learning breaks down too. Initial beliefs imply τ0 > τ ∗, so
the economy begins outside the illiquidity trap. The figure shows two possible
realizations. In both cases, beliefs oscillate in response to the first few observa-
tions, which include instances of both {s, z} ∈ {{A, H} ∪ {B, L}} (which raises g)
and {s, z} ∈ {{A, L} ∪ {B, H}} (which lowers g). Since the true value of μ is μ̄, the
first type of observation is more common, so over time g drifts upward toward
g = 1, which leads to the maximum possible level of informativeness, asset
prices, and trading. However, in one of the realizations, the early observations
include many instances of {s, z} ∈ {{A, L} ∪ {B, H}}, upon which g decreases and
τ falls below τ ∗. The economy thus falls into the illiquidity trap: there is no
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Figure 2. Two possible long-run outcomes. The example uses μ = μ̄ = 0.9, g0 = 0.7, λ = 1.5,
Z ∼ U [0, 1], θ = 1, γ = 0.54, and φ = 5x. (Color figure can be viewed at wileyonlinelibrary.com)

trade and therefore no learning. Note that, even before actually entering the
illiquidity trap, whenever τ is low, the frequency of observations φ is low, so
the learning process slows down before stopping entirely.

C. Changing μ

Suppose that, instead of being fixed forever, μ switches randomly between its
two possible values at a Poisson rate δ. Since traders do not observe the changes
in μ directly, they face a filtering problem: keeping track of the changing value
of μ on the basis of their observations. The solution of this problem is as
follows. During any interval in which no ex-post signals are observed, gt evolves
according to

dgt

dt
= δ(1 − 2gt), (16)
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and any time there is a new observation, gt jumps according to (13). Equa-
tion (16) says that, during periods with no new observations, gt mean-reverts
toward 0.5.

The assumption that μ changes value is meant to capture the idea that the
structure of the economy, which determines the correct way to use information,
may change over time. This means, in turn, that, just like the expertise of
doctors, lawyers, or car mechanics, the expertise of traders depreciates: unless
new observations are added, agents are rationally aware that the true model
may have changed so that their expertise is based on possibly outdated data,
and hence they become less confident. As a result, even if the historical track
record includes a large number of observations, gt does not converge to zero
or one over time. Even experienced traders will react to unlikely events by
wondering whether these events are outliers or whether the model of the world
that they are used to relying on has stopped working, which lowers liquidity.
It is still the case that, on average, liquidity increases over time, but it will
remain fragile even in mature markets.

LEMMA 2: If δ > 0 and there is an illiquidity trap, then τt →a.s. 0.

Lemma 2 says that if there is an illiquidity trap, the economy will eventually
fall into it and never emerge. This is in contrast to Proposition 4, which says
that with a constant μ, the economy can avoid the illiquidity trap in the long
run with positive probability. The difference is that with constant μ, experience
does not depreciate, so as beliefs converge to either g = 0 or g = 1 the sequence
of unlikely events that is needed for the economy to fall back into the illiquidity
trap gets longer and less probable. Instead, when μ can change, unlikely events
are not the only way to drive the economy into the illiquidity trap: periods
with no observations prevent beliefs from converging to g = 0 or g = 1, so the
sequence of unlikely observations that leads to the illiquidity trap remains
bounded.

If there is no illiquidity trap, standard arguments imply that informativeness
will converge to an invariant distribution. In the long run, informativeness will
fluctuate. Sometimes, there will be many recent observations that all point in
the same direction, giving agents high confidence in their estimates of μ, and
leading, in turn, to high informativeness and liquidity; at other times, there
will be few or contradictory observations, pushing beliefs toward g = 0.5 and
lowering liquidity. Prices, the volume of trade, and learning rates will therefore
also fluctuate.

One of the sources of such fluctuations is actual changes in the true value of
μ. In expectation, these changes lower informativeness.

PROPOSITION 5: Starting from any beliefs gt �= 0.5, let t + T be the first time
an ex-post signal is observed after t. Expected informativeness at time t + T is
higher if μ has not changed between t and t + T , that is, E(τ ′

t+T |μt+T = μt) >

E(τ ′
t+T |μt+T �= μt).

Proposition 5 establishes that informativeness, and therefore liquidity, is
higher when the economy remains stable than when it suffers shocks. If the
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Figure 3. Simulated path. The example uses μ = μ̄ = 0.9, g0 = 0.7, λ = 1.5, Z ∼ U [0, 1], θ = 1,
γ = 0.54, φ = 5x + 0.04(1 − x), and δ = 0.0001. The gray area in the first panel shows the region of
μ̂ in which trade breaks down. (Color figure can be viewed at wileyonlinelibrary.com)

true value of μ has changed since the last observation, it is more likely that
the next observation will conflict with agents’ beliefs, which will make agents
uncertain about the true value of μ, and thus decrease liquidity. In periods of
stability, it is more likely that new observations will reaffirm agents’ priors,
which will shift beliefs away from gt = 0.5, increasing the informativeness of
signals and, in turn, liquidity.

Figure 3 plots a simulated path for the same economy as in Figure 2 with
two minor differences. First, the arrival rate of ex-post signals is φ = 5x +
0.04(1 − x), which means that it is positive even when x = 0 (i.e., when trade
breaks down). This implies that there is no illiquidity trap. Second, the value
of μ changes with a Poisson intensity δ = 0.0001, so expertise depreciates at a
small positive rate.

In the example, at first the signals move the economy toward the region of
beliefs where assets are completely illiquid; this decreases the rate of learning
process, so the economy remains there for a long time. Eventually, a string
of signals that all indicate that μ = 1 − μ̄ arrive close to each other and the
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Figure 4. Long-term distribution of informativeness. This distribution is computed by sam-
pling 10,000 equally spaced observations over a simulation of 100,000 periods in calendar time and
approximating the density with a Gaussian kernel. The gray area shows the region of τ in which
trade breaks down. (Color figure can be viewed at wileyonlinelibrary.com)

economy escapes the illiquid region. The learning rate accelerates, so agents
receive a lot of signals that, on average, confirm μ has not changed and liquidity
remains high for many periods. Eventually, a string of signals arrives that
points (correctly) to μ having changed sign, so the economy becomes illiquid
again and the cycle repeats itself, with relatively long periods of sustained
liquidity and sustained illiquidity. Liquidity and the arrival rate of signals all
comove with beliefs.

Figure 4 plots the long-term distribution of informativeness. Since both the
rate of learning when there is no trade and the depreciation rate of expertise
are low, the economy spends most of the time in states in which informative-
ness is either close to its maximum τ̄ or at levels that are insufficient to sustain
trade. This shows that the model’s predictions are continuous with respect to
whether there is an illiquidity trap. If a lack of trade leads to a large slowdown
in the rate of learning but not quite a complete shutdown, then liquidity will
eventually recover, but will spend a large amount of time in an illiquid state.

Figure 5 plots an impulse response of the economy if, starting from the
median level of liquidity, it receives a series of signals that push beliefs into
the region in which assets are illiquid. In the example, illiquidity makes the
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Figure 5. Impulse response. The figure plots the impulse response after, in period 1,000, a
series of consecutive unlikely observations shift the economy into the illiquid region. The quantiles
are computed over 5,000 simulations, each 10,000 periods long in calendar time. (Color figure can
be viewed at wileyonlinelibrary.com)

learning process very slow. It therefore takes (on average) a long time for liquid-
ity to recover after the shock. Note that the example is meant as an illustration
and not as a quantitative statement. The point is that if signal frequency φ(τ ) is
very low when τ < τ ∗ (i.e., when trade breaks down), then recovery after assets
become illiquid may take a long time. This mechanism could help explain why
recoveries after financial crises tend to be slow (Cerra and Saxena (2008), Rein-
hart and Rogoff (2009)): unexpected shocks make financial expertise outdated,
liquidity falls, and recovery requires rebuilding the stock of expertise.

In this example, shocks affect information directly, but the learning dynamics
could also transmit shocks that originate elsewhere. For instance, negative
shocks to buyers’ productivity can reduce trade, which would decrease the rate
of learning and lead to lower liquidity in the future. Kurlat (2010) shows how
this effect can create persistence in a business cycle model.

IV. Conclusion

Introducing social learning dynamics into a standard model of trade under
asymmetric information yields a rich set of implications. It provides a dynamic
link between liquidity and trading volume, a theory of why liquidity increases
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over time, why it can be volatile, why it falls after unexpected events, and why
illiquidity can become long-lasting.
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Appendix A: Proofs

A. Proof of Lemma 1

1. Using (8) and (9), equation (10) can be rewritten as

V (τ ) = 1 + τ

2

⎡
⎢⎣F(pH)θ +

∫
Z≥pH (τ )

ZdF(Z)

⎤
⎥⎦

+ 1 − τ

2

⎡
⎢⎣F(pL)θ +

∫
Z≥pL(τ )

ZdF(Z)

⎤
⎥⎦ ,

so the inequalities follow immediately from Assumption 1.
2. Plugging τ = 1 into (8) and (9) gives pH = θ and pL = 0. Replacing this

in (10) gives the result.
3. (a) For τ = 0, both (8) and (9) reduce to

p = F(p)
F(p) + λ

θ.

If condition (11) holds, then there is no positive solution, and thus
the only solution is p = 0. The right-hand side of equation (9) is
decreasing in τ and lies below the 45-degree line for τ = 0. It must
therefore lie below the 45-degree line for any τ , so the only solution
of equation (9) is p = 0.

(b) Since condition (11) is a strict inequality, by continuity, there is a
neighborhood around τ = 0 where (8) has no positive solution. The
fact that pH(τ ) is strictly increasing whenever it is positive results
from the fact that the right-hand side of equation (8) is increasing in
τ . This, in turn, implies that the cutoff τ ∗ is unique.

(c) This follows by replacing pL = pH = 0 in equation (10).
(d) Since under condition (11), we have pL = 0, equation (10) reduces to:

V (τ ) = 1 + τ

2

⎡
⎢⎣F(pH)θ +

∫
Z≥pH (τ )

ZdF(Z)

⎤
⎥⎦ + 1 − τ

2
E(Z),
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so

dV
dτ

= 1
2

⎡
⎢⎣F(pH)θ +

∫
Z≥pH (τ )

ZdF(Z) − E(Z)

⎤
⎥⎦ + 1 + τ

2
f (pH)(θ − pH)

dpH

dτ

= 1
2

⎡
⎢⎣

∫
Z≤pH (τ )

(θ − Z)dF(Z) + (1 + τ ) f (pH)(θ − pH)
dpH

dτ

⎤
⎥⎦ ≥ 0,

where the last inequality follows from the fact that pH(τ ) < θ and
dpH (τ )

dτ
≥ 0 by part 3b.

B. Proof of Proposition 1

Assume w.l.o.g. that gt > 0.5, so τt = 4(gt − 0.5)(μ̄ − 0.5). Let n be the number
of ex-post signals that agents observe between t and t′; n is a random variable
with a Poisson distribution with parameter φ̄ = ∫ t′

t φsds. Let r be the fraction
of these observations that are either {s = A, z = H} or {s = B, z = L}. Then, by
(13), we have

gt′ = (ω̄r(1 − ω̄)1−r)ngt

(ω̄r(1 − ω̄)1−r)ngt + ((1 − ω̄)rω̄1−r)n(1 − gt)
. (A1)

Now compute E(τt′)

E(τt′) = 4(μ̄ − 0.5)E(|gt′ − 0.5|)
> 4(μ̄ − 0.5)E(gt′ − 0.5)

= 4(μ̄ − 0.5)(gt − 0.5)

= τt.

The first line is true by definition. The second line follows from the fact that
if there is no illiquidity trap, then φ̄ > 0. Since the Poisson distribution is
unbounded, there is a strictly positive probability of n large enough and r low
enough that, using (A1), gt′ < 0.5. The third line follows from the law of iterated
expectations. The last line is again by definition.

C. Proof of Proposition 2

1. Assume w.l.o.g. that gt > 0.5. Equation (13) implies that after an unlikely
observation, beliefs are given by

g′
t = (1 − ω̄)gt

(1 − ω̄)gt + ω̄(1 − gt)
< gt. (A2)
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If gt′ ≥ 0.5, this immediately implies that τt′ < τt. If gt′ < 0.5, τt′ < τt holds
unless

0.5 − gt′ ≥ gt − 0.5. (A3)

Assume (A3) holds. Then, we have

1 ≥ gt + gt

gt + ω̄
1−ω̄

(1 − gt)

≥ τ ∗

4(μ̄ − 0.5)
+ 0.5 +

0.5 + τ ∗
4(μ̄−0.5)

0.5 + τ ∗
4(μ̄−0.5) + ω̄

1−ω̄

(
0.5 − τ ∗

4(μ̄−0.5)

)

⇒ τ ∗ ≤ τ̄

(
ω̄

1−ω̄

)0.5 − 1(
ω̄

1−ω̄

)0.5 + 1
,

which contradicts (14). The second inequality follows from the assump-
tion that τt ≥ τ ∗, and the last results from rearranging and using
τ̄ ≡ 2(μ̄ − 0.5). Hence, (A3) cannot hold and τ ′

t < τt after an unlikely ob-
servation. Since, by Lemma 1, liquidity is increasing in τ , the result
follows.

2. Assume w.l.o.g. that gt > 0.5. After n unlikely observations, beliefs are
given by

g′
t = gt

gt + (
ω̄

1−ω̄

)n (1 − gt)
,

so for

n >
log

(
2(μ̄−0.5)−τ ∗
2(μ̄−0.5)+τ ∗

)
+ log

(
2(μ̄−0.5)+τt
2(μ̄−0.5)−τt

)
log

[
ω̄

1−ω̄

] , (A4)

g′
t < τ ∗

4(μ̄−0.5) + 0.5. If g′
t > 0.5, this implies that τ ′

t < τ ∗. Furthermore, the
argument from part 1 shows that if gt > 0.5 and, after the next observa-
tion, g′

t < 0.5, then τ ′
t < τ ∗, so the inequality holds in this case as well.

3. This follows directly from the fact that the right-hand side of (A4) is
increasing in τt.

D. Proof of Proposition 3

Using (A2), informativeness after an unlikely observation is given by

τ ′
t = 4

⎛
⎝ τt

4(μ̄−0.5) + 0.5

τt
4(μ̄−0.5) + 0.5 + ω̄

1−ω̄

(
0.5 − τt

4(μ̄−0.5)

) − 0.5

⎞
⎠ (μ̄ − 0.5)

=
(

τt − (2ω̄ − 1)τ̄
1 − (2ω̄ − 1) τt

τ̄

)
.

This expression is decreasing in τ̄ = 2(μ̄ − 0.5) and in ω̄ = μ̄γ + (1 − μ̄)(1 − γ ),
and therefore is decreasing in μ̄.
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E. Proof of Proposition 4

1. Let Nt be the cumulative number of observations up to and including time
t and Mt be the number of those observations that are {s, z} ∈ {{A, H} ∪
{B, L}}. Then, equation (13) implies that beliefs at t are given by

gt = ω̄Mt (1 − ω̄)Nt−Mt g0

ω̄Mt (1 − ω̄)Nt−Mt g0 + (1 − ω̄)Mtω̄Nt−Mt (1 − g0)
. (A5)

If there is no illiquidity trap, then limt→∞ Nt = ∞ and the law of large
numbers implies that Mt

Nt
converges almost surely to either ω̄ or 1 − ω̄.

Equation (A5) implies that gt+1 converges almost surely to either one or
zero, which implies that τt → τ̄ .

2. This part is immediate from the definition of an illiquidity trap.
3. Suppose τ > τ ∗ and w.l.o.g. assume that g > 0.5. Suppose it were the case

that an observation of {s, z} ∈ {{A, L} ∪ {B, H}} led to g′ < 0.5. Using (13),
we have

g′ = (1 − ω̄)g
(1 − ω̄)g + ω̄(1 − g)

.

Using τ = 4(g − 0.5)(μ̄ − 0.5) and τ ′ = 4(0.5 − g′)(μ̄ − 0.5), we have

τ ′ = 2τ̄ ω̄ − (τ + τ̄ )
2ω̄ − (2ω̄ − 1)

(
τ
τ̄

+ 1
) . (A6)

If τ ≥ τ ∗ and τ ′ ≥ τ ∗, this implies that

τ ∗ ≤ τ̄

(
ω̄

1 − ω̄

)0.5

− 1

(
ω̄

1−ω̄

)0.5 + 1
,

which contradicts (14). Therefore, if the illiquidity trap is large, it cannot
be the case that beliefs g cross 0.5 while remaining outside the illiquid-
ity trap. Now assume w.l.o.g. that g0 > 0.5 and let g∗ = τ ∗

4(μ̄−0.5) + 0.5 be
the beliefs at the edge of the illiquidity trap. Since gt cannot cross the
illiquidity trap, we have

Pr(gt < 1 − g∗) = 0 ∀t. (A7)

Furthermore, as long as gt remains outside the illiquidity trap, the num-
ber of observations converges to infinity, so by the law of large numbers
gt must converge to either zero or 1. Since it cannot converge to zero
because that would involve crossing the trap, it follows that for any ε,

lim
t→∞ Pr(gt > 1 − ε|gt > g∗) = 1. (A8)
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By the law of iterated expectations, E(gt) = g0, which implies that

g0 = E(gt|gt ≥ 1 − ε) Pr(gt ≥ 1 − ε)

+ E(gt|gt ∈ (g∗, 1 − ε)) Pr(gt ≥∈ (g∗, 1 − ε))

+ E(gt|gt ∈ [1 − g∗, g∗]) Pr(gt ∈ [1 − g∗, g∗])

+ E(gt|gt < 1 − g∗) Pr(gt < 1 − g∗).

Taking limits and using (A7) and (A8), it follows that

g0 = lim
t→∞[E(gt|gt ≥ 1 − ε) Pr(gt ≥ 1 − ε)

+ E(gt|gt ∈ [1 − g∗, g∗]) Pr(gt ∈ [1 − g∗, g∗])],

and therefore

g0 ≤ lim
t→∞ Pr(gt ≥ 1 − ε) + g∗

(
1 − lim

t→∞ Pr(gt ≥ 1 − ε)
)

,

g0 ≥ (1 − ε) lim
t→∞ Pr(gt ≥ 1 − ε) + (1 − g∗)

(
1 − lim

t→∞ Pr(gt ≥ 1 − ε)
)

.

Rearranging gives (15).
4. Formula (A5) can be rewritten as

gt = ω̄Dt g0

ω̄Dt g0 + (1 − ω̄)Dt (1 − g0)
,

where Dt = 2Mt − Nt takes integer values. Suppose that g0 = g∗ + ε for
ε > 0. Then, for any positive Dt, gt > g∗, so beliefs are outside the illiq-
uidity trap. For Dt = −1, equation (A6) applies. If the illiquidity trap is
not large and ε is small enough, this implies that gt < 0.5 and beliefs are
also outside the illiquidity trap. For Dt < −1, gt is even lower, so it is
also outside the illiquidity trap. Therefore, no sequence of observations
can lead the economy into the trap. Conversely, if g0 = ω̄, then for Dt = 1,
we have gt = 0.5, which must be inside the trap and hence the trap is
reached with positive probability.

F. Proof of Lemma 2

By (16) after an interval of length T with no observations starting at time t,

gt+T = 0.5 + gt − 0.5
e2δT .

This implies that, for any gt, if T > 1
2δ

log( τ̄
τ ∗ ), then τt+T < τ ∗. Since in a Poisson

process, an interval of length T with no observations happens with positive
probability, then by the law of large numbers, it happens almost surely. After it
happens, since there is an illiquidity trap, no more ex-post signals are observed
and τt → 0.
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G. Proof of Proposition 5

Assume w.l.o.g. that gt > 0.5. By (16), we have

gt+T = 0.5 + gt − 0.5
e2δT > 0.5.

Equation (13) implies that beliefs are given by

g′
t+T (m = 1) = ω̄gt+T

ω̄mgt+T + (1 − ω̄)m(1 − gt+T )

if {s = A, z = H or s = B, z = L} is observed and

g′
t+T (m = 0) = (1 − ω̄)gt+T

(1 − ω̄)gt+T + ω̄1−m(1 − gt+T )

otherwise. The fact that gt+T > 0.5 therefore implies that

τ ′
t+T (m = 1) > τ ′

t+T (m = 0).

Taking expectations, we have

E(τ ′
t+T |μt+T = μt) = τ ′

t+T (m = 1) Pr(m = 1|μt+T = μ̄) Pr(μt = μ̄)

+ τ ′
t+T (m = 1) Pr(m = 1|μt+T = 1 − μ̄) Pr(μt = 1 − μ̄)

= τ ′
t+T (m = 0) Pr(m = 0|μt+T = μ̄) Pr(μt = μ̄)

+ τ ′
t+T (m = 0) Pr(m = 0|μt+T = 1 − μ̄) Pr(μt = 1 − μ̄)

= τ ′
t+T (m = 1)[ω̄gt + (1 − ω̄)(1 − gt)]

+ τ ′
t+T (m = 0)[(1 − ω̄)gt + ω̄(1 − gt)]. (A9)

Similarly,

E(τ ′
t+T |μt+T �= μt) = τ ′

t+T (m = 1)[ω̄(1 − gt) + (1 − ω̄)gt]

+ τ ′
t+T (m = 0)[(1 − ω̄)(1 − gt) + ω̄gt]. (A10)

Subtracting (A10) from (A9), we have

E(τ ′
t+T |μt+T = μt) − E(τ ′

t+T |μt+T �= μt) = (τ ′
t+T (m = 1)

− τ ′
t+T (m = 0))(2ω̄ − 1)(2gt − 1) > 0.

Appendix B: Microfoundations for Assumption 2

In this appendix, I present three examples of models that would produce
a positive relationship between the rate of information flow φ and informa-
tiveness τ . Given that, by equation (12), the fraction of capital traded x is
an increasing function of τ , each example can also be restated in terms of a
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positive association between φ and x, justifying Assumption 2. The first two ex-
amples lead to functions φ(x) that give rise to an illiquidity trap; the third one
does not.

A. Example 1: A Small Cost of Producing Ex-Ante Signals

Suppose that, instead of assets simply emitting the public signal s, the seller
who owns the asset must decide whether to produce this signal and make it
available to the public, and producing this signal entails a cost ε. The timing
is as follows. First, the seller learns the type of his asset and his productivity
Z. Next, he must decide whether to incur the cost of issuing signal s. If he
decides to issue the signal, he learns its value (A or B) at the same time as
the public, and then decides whether to sell the asset at the signal-conditional
price. Assume that ex-post signals z are issued for free by all assets regardless
of whether or not they trade.

Let

SC(pH, pL, p∅; Z) = I

[
1 + τ

2
max{pH, Z} + 1 − τ

2
max{pL, Z} − ε>max{p∅, Z}

]
,

(B1)

SL(pH, pL, p∅) = I

[
1 − τ

2
pH + 1 − τ

2
pL − ε > p∅

]
. (B2)

The terms pH and pL denote the price conditional on good and bad signals,
respectively, and p∅ denotes the price conditional on not issuing a signal. The
indicator functions SC and SL determine whether sellers who own capital and
lemons, respectively, will find it optimal to produce the signal s, depending on
prices.

DEFINITION B1: Given τ , an equilibrium is given by {pH, pL, p∅} such that

1. pH is the highest solution to:

pH =
(1 + τ )

∫
Z≤pH

SC(pH, pL, p∅; Z)dF(Z)

(1 + τ )
∫

Z≤pH
SC(pH, pL, p∅; Z)dF(Z) + λ(1 − τ )SL(pH, pL, p∅)

θ,

(B3)

taking pL and p∅ as given, if such a solution exists, and pH = 0 otherwise.
2. pL is the highest solution to

pL =
(1 − τ )

∫
Z≤pL

SC(pH, pL, p∅; Z)dF(Z)

(1 − τ )
∫

Z≤pL
SC(pH, pL, p∅; Z)dF(Z) + λ(1 + τ )SL(pH, pL, p∅)

θ,

(B4)

taking pH and p∅ as given, if such a solution exists, and pL = 0 otherwise.
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3. p∅ is the highest solution to

p∅ =
∫

Z<p∅
[1 − SC(pH, pL, p∅; Z)]dF(Z)∫

Z<p∅
[1 − SC(pH, pL, p∅; Z)]dF(Z) + λ(1 − SL(pH, pL, p∅))

θ, (B5)

taking pL and pH as given, if such a solution exists, and pL = 0 otherwise.

Implicitly, the equilibrium definition assumes that buyers move first and
offer the highest prices consistent with zero profits, taking into account the
best response of sellers in terms of both whether to produce the signal and
whether to sell the asset.

PROPOSITION B1: Let p∗
H be the highest solution to

pH = (1 + τ )F
(
pH − 2

1+τ
ε
)

(1 + τ )F
(
pH − 2

1+τ
ε
) + λ(1 − τ )

. (B6)

If condition (11) holds and ε < 1−τ
2 p∗

H, then there is a unique equilibrium, with
pH = p∗

H and pL = p∅ = 0. Holders of capital with Z < pH − 2
1+τ

ε and all hold-
ers of lemons produce signals, while holders of capital with Z > pH − 2

1+τ
ε do

not.

PROOF:

1. Equations (B3) and (B4) imply that, in any equilibrium, pH ≥ pL. Using
(B1), for a seller of capital with productivity Z to choose not to produce a
signal and sell at p∅ requires that

p∅>
1 + τ

2
max{pH, Z} + 1 − τ

2
max{pL, Z} − ε

≥ 1 + τ

2
pH + 1 − τ

2
pL − ε,

whereas using (B2), a seller of a lemon will choose not to produce a signal
if

p∅ >
1 − τ

2
pH + 1 − τ

2
pL − ε.

Since pL ≤ pH , this threshold is lower, so any p∅ such that
SC(pH, pL, p∅; Z) = 0 for some Z < p∅ will have SL(pH, pL, p∅) = 0. Us-
ing (B5), this implies that

p∅ ≤ F(p∅)F(p∅) + λ

θ
,

so, by Lemma (1), there is no solution to (B4) with p∅ > 0. Hence, any
equilibrium must have p∅ = 0.
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2. Replacing p∅ = 0 in (B1), we have

SC(pH, pL, p∅; Z) = I

[
1 + τ

2
max{pH, Z} + 1 − τ

2
max{pL, Z} − ε > Z

]

≥ I

[
1 + τ

2
max{pH, Z} + 1 − τ

2
Z − ε > Z

]

= I

[
Z < pH − 2

1 + τ
ε

]
, (B7)

which, using (B3), implies that

pH ≥ (1 + τ )F
(
pH − 2

1+τ
ε
)

(1 + τ )F
(
pH − 2

1+τ
ε
) + λ(1 − τ )

(B8)

and therefore in any equilibrium pH ≥ p∗
H .

3. Since, by assumption ε < 1−τ
2 p∗

H , using (B2) implies that in any equilib-
rium, SL(pH, pL, p∅) = 1 for any pL.

4. Replacing SL = 1, noting that SC is bounded above by one and using (B4)
implies that

pL ≤ (1 − τ )F(pL)
(1 − τ )F(pL) + λ(1 + τ )

θ,

so by (1) in any equilibrium pL = 0.
5. Using pL = 0 and p∅ = 0 implies that (B7) and therefore (B8) hold as

equalities. �

In equilibrium, therefore, the owners of capital who plan to sell if the signal is
positive and the owners of lemons produce ex-ante signals s, while the owners
of capital who plan not to sell do not. Since all assets produce ex-post signals z,
the number of {s, z} pairs that are available for learning is equal to the number
of ex-ante signals s that are produced. Letting ε → 0, this is equal to

φ(τ ) =
{

F(pH(τ )) + λ if pH(τ ) > 0
0 otherwise, (B9)

which is increasing in τ .

B. Example 2: Ex-Post Signals Produced by Intermediaries

Suppose that, instead of trading directly with buyers, sellers instead can
trade only with intermediaries. These intermediaries are deep-pocketed, risk-
neutral, and competitive, and have no valuation for any asset. They are the
only ones who can observe (at no cost) the ex-ante signals s, which are pro-
duced automatically by all assets. After buying an asset, an intermediary can
privately observe (also at no cost) the ex-post signal z for the asset, and can then
sell it to buyers. If they want to, intermediaries can credibly disclose both the
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ex-ante and the ex-post signals that they observed for each asset. The standard
unraveling logic of Milgrom (1981) and Grossman (1981) applies, so intermedi-
aries will choose to fully disclose both s and z. Furthermore, since they have no
valuation for the asset, they will sell all the assets they buy. Since no further
selection takes place, the law of iterated expectations implies that the expected
price, conditional on s, that buyers will be willing to pay after observing {s, z}
is equal to what they would have been willing to pay having observed s only.
Therefore, intermediaries will make zero profits by buying from sellers at the
equilibrium price pS from the baseline model, disclosing the {s, z} signal pair,
and reselling. The volume of signal pairs produced will therefore be equal to
the total volume of trade. Assume w.l.o.g. that gt > 0.5, so only A-labeled assets
trade. The total volume of trade (and therefore the rate of flow of signals) will
be

φ = μF(pH(τ ))︸ ︷︷ ︸
A-labeled capital

+ λ(1 − μ)I(pH(τ ) > 0)︸ ︷︷ ︸
A-labeled lemons

,

which is increasing in τ .

C. Example 3: Variable Investment

Suppose that, instead of being endowed with assets, sellers had to incur
a cost to produce them. Let c(K) be the cost of producing K units of capital,
where c(·) is increasing, concave, and differentiable. Assume that λK lemons
are produced as a side product of producing K units of capital, and each seller
produces a representative portfolio that includes the aggregate proportion of
each type of asset with each type of signal.11 Furthermore, suppose that all
assets always produce ex-ante and ex-post signals that are publicly observable
at no cost. Since the relative supply of capital and lemons is the same as in the
baseline model, the prices given by equations (8) and (9) and the ex-ante value
given by (10) still apply. A seller’s investment problem is then simply

max
K

V (τ )K − c(K),

with first-order condition

c′(K) = V (τ ),

which immediately implies that K(τ ) = (c′)−1(V (τ )) is increasing in τ . Since all
assets produce {s, z} pairs, the flow rate of signals is

φ = (1 + λ)K(τ ),

which is increasing in τ .

11 Assuming instead that the supply of lemons is fixed independent of K would not change the
conclusion. Caramp (2016) studies how market conditions differentially affect incentives to produce
high- and low-quality assets.
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