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a b s t r a c t 

In an intertemporal equilibrium asset pricing model featuring disappointment aversion and 

changing macroeconomic uncertainty, we show that besides the market return and mar- 

ket volatility, three disappointment-related factors are also priced: a downstate factor, a 

market downside factor, and a volatility downside factor. We find that expected returns 

on various asset classes reflect premiums for bearing undesirable exposures to these fac- 

tors. The signs of estimated risk premiums are consistent with the theoretical predictions. 

Our most general, five-factor model is very successful in jointly pricing stock, option, and 

currency portfolios, and provides considerable improvement over nested specifications pre- 

viously discussed in the literature. 
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1. Introduction 

Downside risk refers to the risk of an asset or port-

folio in case of an adverse economic scenario. Upside

uncertainty is the analogue if the scenario is favorable.

The asymmetric treatment of downside risk versus upside
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uncertainty by investors has long been accepted among

practitioners and academic researchers (see, e.g., Roy,

1952; Markowitz, 1959 ), and has led to the development

of new concepts in asset pricing and risk management,

like the value-at-risk and the expected shortfall. Theories

of rational behavior have been developed, where investors

place greater weights on adverse market conditions in

their utility functions. These include the lower-partial

moment framework of Bawa and Lindenberg (1977) , the

loss aversion of Kahneman and Tversky (1979) in their

prospect theory, and the disappointment aversion of Gul

(1991) , which has been generalized by Routledge and Zin

(2010) . These theories suggest priced downside risks in

the capital market equilibrium. 

We derive and test the cross-sectional predictions

of a consumption-based asset pricing model where the

representative investor has generalized disappointment

aversion (GDA) preferences and macroeconomic uncer-

tainty is time-varying. In a setting without disappointment

aversion, two factors are priced in the cross-section:

the market return ( r ) and changes in market volatility
W 

https://doi.org/10.1016/j.jfineco.2018.03.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jfec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfineco.2018.03.010&domain=pdf
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1 For instance, Bonomo et al. (2011) show that persistent shocks to con- 

sumption volatility are sufficient when coupled with GDA preferences to 

produce moments of asset prices and predictability patterns that are in 

line with the data. Schreindorfer (2014) aims at explaining properties of 

index option prices, equity returns, variance, and the risk-free rate us- 

ing the GDA model and a heteroskedastic random walk for consump- 

tion with the multifractal process of Calvet and Fisher (2007) . Delikouras 
( �σ 2 
W 

). That is, investors require two premiums to invest 

in an asset. The first one is a compensation for covariation 

with the market return, Cov (R e 
i 
, r W 

) , which is line with the 

prediction of the CAPM. The second premium is a com- 

pensation for covariation with changes in market volatility, 

Cov (R e 
i 
, �σ 2 

W 

) . It has been shown by previous empirical 

studies that volatility risk is priced in the cross-section 

(see, e.g., Ang et al., 2006b; Adrian and Rosenberg, 2008 ). 

Our main theoretical contribution is to show that 

when disappointment aversion is added to the framework, 

investors require three additional premiums as compensa- 

tion for exposures to disappointment-related risk factors. 

The first premium is a compensation for the covariance 

with the downstate factor, Cov (R e 
i 
, I(D)) . The downstate 

factor, I(D) , takes the value one if disappointment sets in 

and zero otherwise. The model suggests that disappoint- 

ment ( D) may set in due to two reasons: a sufficiently 

large fall in market return or rise in market volatility. The 

second premium is a compensation for the covariance with 

the interaction of the market return and the downstate 

factor, Cov (R e 
i 
, r W 

I(D)) . This factor represents movements 

of the market return in the downstate and we refer to 

it as the market downside factor. The third premium is 

a compensation for the covariance with the interaction 

of changes in market volatility and the downstate factor, 

Cov (R e 
i 
, �σ 2 

W 

I(D)) . This factor represents changes in mar- 

ket volatility in the downstate and we refer to it as the 

volatility downside factor. 

In the general case, our setting thus leads to a five- 

factor model. Although there are five factors in the model, 

only two time series, the market return ( r W 

) and changes 

in market volatility ( �σ 2 
W 

), are needed to construct these 

factors: the downstate factor is constructed as a function 

of these two series, and the two downside factors are sim- 

ply interactions with the downstate factor. We also show 

that if the representative investor has infinite elasticity of 

intertemporal substitution, then market volatility has no 

role in the model, and the disappointing event reduces to a 

fall of the market return below a reference threshold. This 

special case corresponds to a three-factor model with the 

market, the downstate, and the market downside factors. 

The cross-sectional implications of downside risk 

have already been studied, most notably, by Ang et al. 

(2006a) and Lettau et al. (2014) . Our three-factor model 

nests the models from both of these studies, with different 

restrictions on the premium corresponding to the down- 

state factor. We explicitly derive these restrictions and 

confront them with the data. Our results suggest that the 

restrictions imposed by the downside risk models of Ang 

et al. (2006a) and Lettau et al. (2014) are not supported 

empirically. Therefore, our three-factor model provides 

considerable improvement in explaining the cross-section 

of different asset returns, even though all three models 

use exactly the same information. 

The more general five-factor model emphasizes the 

role of volatility in understanding downside risks. To our 

knowledge, little or no attention has been paid to volatility 

downside risk in the literature. We argue that volatility 

downside risk is also an important factor in explaining the 

cross-section of asset returns, as the five-factor model pro- 
vides further improvement compared to the three-factor 

model. 

We use the generalized method of moments (GMM) to 

empirically investigate the performance of our three- and 

five-factor models. Our benchmark test assets are various 

portfolios formed from US stocks, index option portfolios 

sorted on type, maturity, and moneyness, and currency 

portfolios sorted on their respective interest rates. These 

portfolios exhibit large heterogeneity in their average 

returns, and thus are ideal for cross-sectional asset pricing 

tests. The main empirical results of the paper relate to the 

pricing of the disappointment-related risk factors. 

All the disappointment-related factors have significant 

risk premiums and the signs on the risk prices are in line 

with the theoretical predictions. In terms of pricing errors, 

when tested on all asset classes jointly, our three-factor 

model with a root-mean-squared-pricing error (RMSPE) 

of 20 basis points (bps) per month provides a significant 

improvement over the CAPM with a RMSPE of 50bps. 

The corresponding pricing errors of the downside risk 

models of Ang et al. (2006a) (28bps) and Lettau et al. 

(2014) (33bps) are considerably higher than that of the 

three-factor model. Our five-factor model, with a RMSPE 

of 17bps, largely outperforms a two-factor model with 

market return and changes in market volatility with a 

RMSPE of 27bps. Moreover, the five-factor GDA model also 

outperforms the four-factor model of Carhart (1997) on 

all asset classes except for stock portfolios. Also, the GDA 

model has the benefit of being motivated by dynamic 

consumption-based equilibrium asset pricing and be- 

havioral decision theories, rather than being motivated 

by asset pricing anomalies themselves. These findings 

suggest the importance of disappointment-related risk in 

the cross-section of asset returns. Our results are robust 

to using additional asset classes and test portfolios, to 

alternative specifications of the disappointing event, and 

to alternative measures of market volatility. 

This paper contributes to the developing literature that 

attempts to provide empirical support for the recent gen- 

eralization by Routledge and Zin (2010) of the axiomatic 

disappointment aversion framework of Gul (1991) . In the 

literature, GDA preferences have appeared in consumption- 

based equilibrium models mainly with the goal of explain- 

ing the time series behavior of the aggregate stock market, 

and rarely in cross-sectional asset pricing studies. 1 One 

exception is Delikouras (2017) , who also studies the cross- 

sectional implications of a consumption-based model with 

disappointment aversion preferences. There are several 

differences between our study and that of Delikouras 

(2017) . First, he uses annual and quarterly consumption 

data. In contrast, we substitute out consumption in a way 

similar to Campbell (1993) , and rely on the market return. 
(2014) uses the GDA model to explain the credit spread puzzle. 
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We can then avoid potential measurement problems in

consumption data advocated by Wilcox (1992) , or delayed

responses of consumption to financial market news as dis-

cussed by Parker and Julliard (2005) , and test the model at

the monthly frequency using market return data. Second,

he uses the original version of disappointment aversion as

introduced by Gul (1991) , while we use the generalized

version of Routledge and Zin (2010) . Our results, when

considering different disappointment thresholds, suggest

that the generalized version is more appropriate in a

representative agent setting. Third, Delikouras (2017) as-

sumes constant volatility of aggregate consumption, while

our setting also allows for time-varying macroeconomic

uncertainty. This feature is supported empirically (see,

for example, Bansal et al., 2005 ) and it gives rise to the

volatility-related premiums in our cross-sectional model.

Finally, since we derive the cross-sectional implications

in the form of a factor model and rely on market return

rather than consumption, our results are directly compa-

rable to recent cross-sectional studies on downside risks

such as Ang et al. (2006a) and Lettau et al. (2014) . 

The remainder of this paper is organized as follows. In

Section 2 , we present the theoretical setup from which we

derive the implied cross-sectional model. Section 3 con-

tains the empirical analysis with several robustness

checks. Section 4 concludes, while the Appendix contains

the description of the data sources and some technical

derivations. An Online Appendix contains additional details

that are omitted from the main text for brevity. 

2. Theoretical motivation 

We consider an economy where the representative in-

vestor has recursive utility as in Epstein and Zin (1989) and

Weil (1989) 

 t−1 = 

⎧ ⎨ 

⎩ 

[ 
( 1 − δ) C 

1 − 1 
ψ 

t−1 
+ δ[ R t−1 ( V t ) ] 

1 − 1 
ψ 

] 1 

1 − 1 
ψ if ψ > 0 and ψ � = 1 

C 1 −δ
t−1 [ R t−1 ( V t ) ] 

δ if ψ = 1 

, 

(1)

with t = 1 , 2 , . . . , and where 0 < δ < 1 is the parameter of

time preference and ψ > 0 is the elasticity of intertemporal

substitution. The lifetime utility at t − 1 , V t−1 , is a function

of the period’s consumption, C t−1 , and the certainty equiva-

lent of next period’s lifetime utility, R t−1 ( V t ) . Routledge and

Zin (2010) embed generalized disappointment aversion

(GDA) into this framework by assuming that the certainty

equivalent R t−1 is implicitly defined by 

 ( R t−1 ) = E t−1 [ U ( V t ) ] 

−�E t−1 [ ( U ( κR t−1 ) − U ( V t ) ) I ( V t < κR t−1 ) ] , (2)

where E t [ · ] denotes the expectation conditional on infor-

mation up to time t . The utility function, U , is defined as 

 ( x ) = 

⎧ ⎨ 

⎩ 

x 1 −γ − 1 

1 − γ
if γ ≥ 0 and γ � = 1 

ln x if γ = 1 

, (3)

where the parameter γ ≥ 0 is the coefficient of relative risk

aversion. When � is equal to zero, R t−1 reduces to expected

utility (EU) preferences and V t−1 represents the Epstein
and Zin (1989) recursive utility. GDA preferences are a

two-parameter extension of the EU framework. When

� > 0, outcomes lower than κR t−1 receive an extra weight,

decreasing the certainty equivalent. The larger weight

given to these bad outcomes implies an aversion to losses.

The parameter � ≥ 0 is interpreted as the degree of disap-

pointment aversion, while the parameter 0 < κ ≤ 1 is the

percentage of the certainty equivalent such that outcomes

below it are considered disappointing. The special case

κ = 1 corresponds to the original disappointment aversion

preferences of Gul (1991) . 

The investor maximizes the lifetime utility subject to

the budget constraint 

 t = ( W t−1 − C t−1 ) R W t , (4)

where W t−1 is the wealth in period t − 1 and R Wt is the

simple gross return on wealth, which we refer to as the

market return. Following Hansen et al. (2007) , Routledge

and Zin (2010) , and Bonomo et al. (2011) , the stochastic

discount factor (SDF) between periods t − 1 and t in the

model with generalized disappointment aversion is 

M 

GDA 
t−1 ,t = M t−1 ,t 

(
1 + �I ( D t ) 

1 + κ1 −γ �E t−1 [ I ( D t ) ] 

)
, (5)

where I ( · ) denotes the indicator function taking the value

one if the condition is met and zero otherwise, and 

M t−1 ,t = δ
(

C t 

C t−1 

)− 1 
ψ 

(
V t 

R t−1 ( V t ) 

) 1 
ψ 

−γ

and 

D t = { V t < κR t−1 ( V t ) } , (6)

where M t−1 ,t is the SDF without disappointment aversion

( � = 0 ), and D t denotes the disappointing event. The

logarithm of M t−1 ,t and D t may be written as 

ln M t−1 ,t = ln δ − γ�c t −
(
γ − 1 

ψ 

)
�z V t and 

D t = { �c t + �z V t < ln κ} , (7)

where �c t ≡ ln ( C t 
C t−1 

) and �z V t ≡ ln ( V t C t 
) − ln ( 

R t−1 (V t ) 
C t−1 

)

represent the change in the log consumption level (or con-

sumption growth) and the change in the log welfare valua-

tion ratio (or welfare valuation ratio growth), respectively. 

For every asset i , optimal consumption and portfolio

choice by the representative investor induces a restriction

on the simple excess return R e 
it 

that is implied by the Euler

condition: 

E t−1 

[
M 

GDA 
t−1 ,t R 

e 
it 

]
= 0 . (8)

In the special case when � = 0 and γ = 1 /ψ, the moment

condition (8) is readily testable by GMM using actual

data on aggregate consumption growth and asset returns.

Earlier results for this test of the standard model are pre-

sented in Hansen and Singleton ( 1982,1983 ). In the general

case, however, the moment condition (8) is not directly

testable by GMM since the continuation value is not ob-

servable from the data. Following the long-run risks asset

pricing literature pioneered by Bansal and Yaron (2004) , an

assumed endowment dynamics can be exploited, together

with the utility recursion (1) and the certainty equivalent

definition (2) , to express welfare valuation ratios in terms

of economic state variables such as aggregate volatility,

which may be measured or estimated from the data. 
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2.1. Cross-sectional implications 

In order to obtain the cross-sectional implications that 

form the basis of our empirical investigation, we make 

two substitutions in the expressions for ln M t−1 ,t and 

D t in (7) . First, we substitute out consumption growth 

following Epstein and Zin (1989) , Hansen et al. (2007) , and 

Routledge and Zin (2010) who show that in equilibrium, 

the market return is related to consumption growth and 

the welfare valuation ratio growth through 

2 

r W t = − ln δ + �c t + 

(
1 − 1 

ψ 

)
�z V t . (9) 

Second, assuming that aggregate consumption growth is 

heteroskedastic and unpredictable as in Bollerslev et al. 

(2009) , Tauchen (2011) , and Bonomo et al. (2011) , and 

consistent with the empirical evidence presented in Beeler 

and Campbell (2012) among many others, we can solve for 

the welfare valuation ratio endogenously and express the 

welfare valuation ratio growth, �z V, t , in terms of changes 

in the volatility of the market return, which we refer to as 

market volatility. 

Making these substitutions, and after some algebraic 

manipulation, the Euler equation in (8) may be written as 

a cross-sectional linear factor model 

E 
[
R 

e 
it 

]
= p W 

σiW 

+ p D σi D + p W D σiW D 

+ p X σiX + p XD σiXD , (10) 

with 

σiW 

≡ Cov 
(
R 

e 
it , r W t 

)
σi D ≡ Cov 

(
R 

e 
it , I ( D t ) 

)
σiW D ≡ Cov 

(
R 

e 
it , r W t I ( D t ) 

)
σiX ≡ Cov 

(
R 

e 
it , �σ 2 

W t 

)
σiXD ≡ Cov 

(
R 

e 
it , �σ 2 

W t I ( D t ) 
)

, 

(11) 

where r Wt is the log-return on the market and �σ 2 
W t is 

the change in the variance of the market return (we are 

going to refer to this as the volatility factor). 3 Eq. (10) cor- 

responds to a linear multifactor representation of expected 

excess returns in the cross-section. This is a five-factor 

model which we refer to as GDA5 throughout the rest of 

the paper. It states that in addition to the market ( r Wt ) and 

volatility ( �σ 2 
W t ) factors, three additional factors command 

a risk premium: the downstate factor I ( D t ) , the market 

downside factor r W t I ( D t ) , and the volatility downside factor 

�σ 2 
W t I ( D t ) . 
2 The true market return is unobservable and an empirical proxy is 

later used in asset pricing tests, consistent with the literature. The usual 

proxy is the return on a stock market index which shall be more volatile 

than the true market return since stock market dividends are at least 

five times more volatile than consumption. Therefore, properties of a con- 

sumption proxy backed out through Eq. (9) using the stock index return 

may be different from those of the observed consumption. 
3 Details of the derivation are outlined in the Online Appendix, where 

we also derive sign restrictions on the covariance risk prices, the defi- 

nition of disappointment in (12) , and the cross-price restrictions in (13) . 

We use “W ” in subscript to refer to quantities (e.g., risk measures or risk 

prices) related to the factor r Wt . Similarly, we use “D” to refer to the fac- 

tor I ( D ) , “W D” for the factor r W I ( D ) , “X ” for the factor �σ 2 
W , and “XD”

for the factor �σ 2 
W I ( D ) , respectively. 
The covariance risk prices p W 

≥ 0, p D ≤ 0 , p W D ≥ 0 , 

p X ≤ 0, and p XD ≤ 0 are functions of the preference pa- 

rameters δ, γ , ψ , � , and κ , as well as functions of the

parameters governing the endowment dynamics. Let us 

have a detailed look at the signs of the covariance risk 

prices. First, as p W 

≥ 0, investors require a premium for 

a security that has positive covariance with the market 

return. This is in line with the CAPM theory of Sharpe 

(1964) and Lintner (1965) . Second, as p X ≤ 0, investors are 

willing to pay a premium for a security that has pos- 

itive covariance with �σ 2 
W t . This is consistent with the 

existing empirical literature (see, e.g., Ang et al., 2006b; 

Adrian and Rosenberg, 2008 ). The third factor in (10) , 

I(D t ) , indicates periods when the economy is in the dis- 

appointing state. We refer to it as the downstate factor 

throughout the paper. The associated risk price is p D ≤
0 , showing that disappointment-averse investors are will- 

ing to pay a premium for a security that has a posi- 

tive covariance with the downstate indicator. Note that 

σi D = P rob(D t )(E[ R e 
it 

| D t ] − E[ R e 
it 

]) , i.e., assets with σi D > 0

are desirable because they have a higher expected return 

in the downstate. The fourth factor is r W t I(D t ) , and it rep-

resents changes in the market index when the economy 

is in the downstate. We refer to it as the market down- 

side factor throughout the paper. The associated risk price 

is non-negative, p W D ≥ 0 . Investors require a premium for 

a security that has positive covariance with r W t I(D t ) , since 

such an asset tends to have a negative return when there 

is a low market return in the downstate. The fifth and fi- 

nal factor is �σ 2 
W t 

I(D t ) , representing changes in market 

volatility when the economy is in the downstate. We sub- 

sequently refer to it as the volatility downside factor. The 

associated risk price is non-positive, p XD ≤ 0 . Investors are 

willing to pay a premium for a security that has positive 

covariance with the volatility downside factor. Such an as- 

set tends to have positive returns when market volatility 

increases in a downstate. 

We also show in the Online Appendix that the disap- 

pointing event may be written as 

D t = 

{ 

r W t − a 
σW 

σX 

�σ 2 
W t < b 

} 

, (12) 

where σW 

= Std[ r W t ] and σX = Std[�σ 2 
W t 

] are the standard 

deviations of market return and changes in market volatil- 

ity, respectively. Similar to the covariance risk prices, the 

coefficients a > 0 and b are also functions of the preference 

parameters and the parameters governing the endowment 

dynamics. The term (σW 

/σX )�σ 2 
W t may be viewed as the 

return on a volatility index that has the same standard de- 

viation as the market return. Disappointment occurs if the 

return on a portfolio consisting of a long position in the 

market index and a times a short position in the volatility 

index falls below a constant threshold b . In particular, if 

the coefficient a is equal to one, the long position in the 

market index is exactly balanced by the short position in 

the volatility index in determining disappointment. As a 

decreases from one towards zero, disappointment is more 

likely to occur due to a fall in the market index rather 

than an increase in the volatility index. Note also that the 

following two nonlinear restrictions apply to the GDA5 
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4 We closely follow the predictions of the theoretical model by using 

the log-return on the market ( r Wt ) as the market factor and using simple 

excess returns on the portfolios ( R e 
it 

) as the dependent variable. 
model: 

p W D 
p W 

= 

p XD 
p X 

p XD = −a 
σW 

σX 

p W D . 
(13)

There are two special cases of the model worth exam-

ining. First, if the elasticity of intertemporal substitution

is infinite ( ψ = ∞ ), then a = 0 and p X = p XD = 0 . That is,

changes in market volatility disappear from the model.

In this case, the cross-sectional model (10) reduces to

a three-factor model with the market, the downstate,

and the market downside factors, and the disappointing

event has the simple form D t = { r W t < b} . We refer to this

restricted model as GDA3 throughout the paper. Second,

if the representative investor is not disappointment averse

( � = 0 ), then p D = p W D = p XD = 0 , i.e., all disappointment-

related factors disappear from the model. In this case,

(10) reduces to a two-factor model where only market risk

and volatility risk are priced. 

Eq. (10) may ultimately be expressed as a multivariate

beta pricing model: 

E 
[
R 

e 
it 

]
= λ� 

F βiF , (14)

where β iF is the vector containing the multivariate regres-

sion coefficients of asset excess returns onto the factors

and λF is the vector of factor risk premiums, respectively,

given by 

βiF = �−1 
F σiF and λF = �F p F . (15)

The vector σ iF contains the covariances of the asset excess

returns with the priced factors as shown in (11) , the vector

p F contains the associated factor risk prices, and �F is the

factor covariance matrix. Since the risk premiums in λF are

linear combinations of the risk prices in p F , the restrictions

in (13) can easily be translated into equivalent restrictions

on the λ-s. Also note that if the covariance between the

market return and changes in market volatility is negative,

then the sign restrictions on the elements of p F discussed

earlier in this section imply the same sign restrictions

on the corresponding elements of λF , i.e., λW 

≥ 0, λD ≤ 0 ,

λW D ≥ 0 , λX ≤ 0, and λXD ≤ 0 . The negative covariance,

ov (r W t , �σ 2 
W t 

) < 0 , is consistent with the leverage effect

postulated by Black (1976) and documented by Christie

(1982) and others, and it is also empirically supported in

our data. The model specification in (14) is the basis of

our empirical analysis. 

3. Empirical assessment 

In this section, we provide an empirical assessment of

the GDA3 and GDA5 models. The GDA3 is a three-factor

model with the market, the downstate, and the market

downside factors: 

E 
[
R 

e 
it 

]
= λW 

βiW 

+ λD βi D + λW D βiW D , (16)

where the disappointing event has the simple form

D t = { r W t < b } . The GDA5 is a five-factor model containing

also the volatility-related factors: 

E 
[
R e it 

]
= λW 

βiW 

+ λD βi D + λWD βiWD + λX βiX + λXD βiXD . (17)
Additionally for the GDA5, volatility enters the definition

of the disappointing event as shown in (12) , and the two

cross-price restrictions in (13) should also be satisfied. The

number of freely estimated λ-s decreases to three due to

the two cross-price restrictions. For the GDA5, we also

estimate the parameter a , which determines the relative

importance of the market return and changes in volatility

in the definition of disappointment. Altogether, there are

four parameters to estimate in case of the GDA5 model.

For both models, the disappointment threshold is set to

b = −0 . 03 for the empirical analysis, but we also consider

other values in the robustness section. 

Finally, note that we do not estimate the underlying

preference parameters, but instead we estimate the risk

premiums, which are functions of both the preference

parameters and the parameters governing the endowment

dynamics. There are several reasons for focusing on the

risk premiums. First, the market return is not observable

and we use the return on the aggregate stock index as a

proxy. This proxy is much more volatile, since it is a claim

on the aggregate stock market dividend, whose growth

rate is at least five times more volatile than the aggregate

consumption growth rate. So, estimating the underlying

preference parameters with this proxy would induce large

estimation bias. Second, the preference parameter esti-

mates would be dependent on the dynamics assumed for

the aggregate endowment in the economy. By estimating

the reduced-form risk premiums in the linear beta repre-

sentations (16) and (17) , the assumed endowment dynam-

ics do not have a direct effect on our results. Third, esti-

mating the reduced-form risk premiums makes our results

comparable to existing cross-sectional tests of models with

downside risks (e.g., Ang et al., 2006a; Lettau et al., 2014 ). 

3.1. Data and estimation method 

Following Lewellen et al. (2010) , we do not restrict

our attention to pricing size/book-to-market portfolios. In-

stead, we estimate our models using various sets of stock

portfolios, and also include additional asset classes like

index options and currencies. Monthly returns on several

sets of US stock portfolios are from Kenneth French’s data

library. Index option returns are from Constantinides et al.

(2013) , who construct a panel of leverage-adjusted (that

is, with a targeted market beta of one) S&P 500 index

option portfolios. Currency returns are from Lettau et al.

(2014) , who use monthly data on 53 currencies to create

six portfolios by sorting them based on their respective

interest rates. The detailed description of the data and

sample periods can be found in Appendix A . 

The risk-free rate is the one-month US Treasury bill rate

from Ibbotson Associates, while the market return is the

value-weighted average return on all CRSP stocks. 4 Both

series were obtained from Kenneth French’s data library.

Empirical tests of the GDA5 model require a measure of

market volatility. Several approaches have been used for

measuring market volatility in cross-sectional asset pricing
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studies. Ang et al. (2006b) use the VIX, Adrian and Rosen- 

berg (2008) estimate volatility from a GARCH-type model, 

while Bandi et al., (2006) use realized volatility computed 

from high-frequency index returns. In our main analysis, 

we measure monthly volatility as the realized volatility 

of the daily market returns during the month. The main 

advantage of this latter measure is that it is very easy 

to construct as it requires only daily market return data. 

Therefore, it allows us to use a longer sample period. Nev- 

ertheless, we also use alternative measures in our robust- 

ness checks, including the VIX, realized volatility calculated 

from intra-daily market returns, and GARCH volatility. 

Portfolio betas and factor premiums from (14) are 

estimated jointly using GMM with moment conditions as 

in Cochrane (20 0 0) : 

⎧ ⎨ 

⎩ 

E 
[
R e 

it 
− αi − F t βiF 

]
= 0 i = 1 , ..., N 

E 
[[

R e 
it 

− αi − F t βiF 

]
f jt 

]
= 0 i = 1 , ..., N , j = 1 , ..., K 

E 
[
R e 

it 
− βiF λF 

]
= 0 i = 1 , ..., N 

, 

(18) 

where R e 
it 

is the excess return on portfolio i, f jt denotes 

factor j, F t is the row vector of all factors in the model, 

β iF is the vector of factor betas for portfolio i , and λF is 

the vector of factor risk premiums. The first two sets of 

moment conditions from (18) directly correspond to the 

formula for estimating the β-s in (15) , while the last set 

of moment conditions represents the model in (14) . The 

advantage of using the GMM is that it allows us to impose 

the cross-price restrictions in the GDA5 model and that 

the standard errors account for the “generated regressors”

problem, i.e., the fact that the β-s are also estimated. 5 

When estimating the factor risk premiums, we always 

apply the additional restriction that the market portfolio 

should be perfectly priced. This additional restriction 

reduces the number of free parameters in all the models 

by one. As a consequence, there are two free parameters 

to estimate for the GDA3, and three free parameters to 

estimate for the GDA5, which makes the models more par- 

simonious. As it can be seen from (10) and (11) , the return 

to be explained in our cross-sectional models is in the 

form of simple excess return ( R e 
it 

), while the market factor 

is the log-return on the market ( r Wt ). 
6 Thus, when the test 

asset is the market portfolio, the return to be explained 

and the market factor are not exactly the same. Therefore, 

imposing the restriction that the market is priced perfectly 

is not equivalent to setting the market premium equal to 

the expected excess return on the market, but it imposes a 

linear restriction on the λ-s. This restriction is discussed in 

detail in the Online Appendix. Essentially, we have to pick 
5 It is shown by Cochrane (20 0 0) , for example, that the correction due 

to Shanken (1992) can be recovered as a special case of the GMM stan- 

dard errors. During the GMM estimation we use the identity weighting 

matrix, and we use the Newey–West estimator with three lags for the co- 

variance matrix of the moment conditions. Delikouras (2017) shows that 

the GMM estimators are consistent and asymptotically normal even when 

the GMM moment conditions include indicator functions as in the case of 

the GDA models. 
6 It is shown in the Online Appendix that deviating from the theoretical 

predictions and using R e Wt instead of r Wt as the market factor does not 

change our empirical results considerably. 
one of the premiums, whose value is implied by the other 

risk premiums through the market restriction. We pick the 

downstate premium ( λD ) to be imposed for the GDA mod- 

els, but the risk premium estimates would be exactly the 

same if we chose another one instead (e.g., λW 

or λW D ). 

3.2. Results 

Table 1 presents risk premium estimates for the CAPM, 

GDA3, and GDA5 models using several sets of US stock 

portfolios: (i) 25 (5 × 5) portfolios formed on size and 

book-to-market, (ii) 25 (5 × 5) portfolios formed on size 

and momentum, (iii) 30 portfolios consisting of ten size, 

ten book-to-market, and ten momentum portfolios, (iv) 

25 (5 × 5) portfolios formed on size and operating prof- 

itability, and (v) 25 (5 × 5) portfolios formed on size and 

investment. 

Panel A corresponds to the CAPM, which also arises as 

a restricted version of the GDA3 if the representative agent 

is not disappointment averse. The value of the market risk 

premium is not estimated, but imposed by the restriction 

that the market portfolio should be perfectly priced by the 

model. To make it clear that certain λ values are imposed 

instead of estimated, we report these values with the 

superscript i and do not report their standard errors in 

Table 1 and in subsequent tables throughout the paper. 

Panel B presents the results for the GDA3. In the three 

middle columns, all risk premiums have the expected 

signs: the market ( λW 

) and market downside ( λW D ) 
factors have a positive premium, while the downstate 

factor ( λD ) has a negative premium. Also, the estimated 

premiums are statistically significant. 7 For the size/book- 

to-market and size/investment portfolios however, the 

downstate premium is positive and the market downside 

premium is not statistically significant. 

Panel C shows the results for the GDA5. Recall that the 

GDA5 involves two cross-price restrictions. We substitute 

out the volatility-related premiums using these restrictions 

and estimate the premiums on the rest of the factors. Ad- 

ditionally, the value of λD is imposed by the restriction 

that the market portfolio is perfectly priced, similar to 

the GDA3. In all the columns, the signs are as expected 

both on the estimated and on the implied premiums: the 

market ( λW 

) and market downside ( λW D ) factors have a 

positive premium, while the premiums on the downstate 

( λD ), the volatility ( λX ), and the volatility downside ( λXD ) 
factors are negative. The only exception is λD for the 

size-investment portfolios. All estimated risk premiums 

are statistically significant. In the case of the GDA5, the 

parameter a in the definition of the disappointing event 

(12) is also estimated. The value of a is less than one in 

four of the five cases and the typical value is close to 0.5. 

Recall that an a value less than one means that the market 

return has a bigger weight in determining disappointing 

states than changes in market volatility. 

Table 2 presents risk premium estimates for the same 

models when index option and currency portfolios are 
7 Note again, that the value of λD is not directly estimated, but is im- 

posed by the restriction that the market portfolio should be perfectly 

priced. 
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Table 1 

Risk premiums for the CAPM and GDA models using stock portfolios. The table shows risk premium estimates for the 

CAPM and GDA models using five different sets of US stock portfolios as test assets: (i) 25 (5 × 5) portfolios formed on 

size and book-to-market, (ii) 25 (5 × 5) portfolios formed on size and momentum, (iii) 30 portfolios consisting of 10 

size, 10 book-to-market, 10 momentum portfolios, (iv) 25 (5 × 5) portfolios formed on size and operating profitability, 

and (v) 25 (5 × 5) portfolios formed on size and investment. We use monthly data and the sample period is from July 

1964 to December 2016. The premiums are estimated using GMM. Standard errors are in parentheses, and ∗ , ∗∗ , and 
∗∗∗ denote significance at the 10%, 5%, and 1% levels. Values with the superscript i are imposed by the restriction that 

the market portfolio should be correctly priced (and by cross-price restrictions for the GDA5). RMSPE is the root-mean- 

squared pricing error of the model in basis points per month and the RMSPE to root-mean-squared returns ratio is 

reported in brackets. 

25 S × BM 25 S × Mom 10 S,B,M 25 S × OP 25 S × INV 

Panel A: CAPM 

λW 0.0050 i 0.0050 i 0.0050 i 0.0050 i 0.0050 i 

RMSPE 30.6 [0.40] 39.4 [0.52] 24.9 [0.39] 23.9 [0.33] 29.0 [0.38] 

Panel B: GDA3 

λW 0.0065 ∗∗∗ 0.0070 ∗∗∗ 0.0065 ∗∗∗ 0.0066 ∗∗∗ 0.0064 ∗∗∗

(0.0016) (0.0 0 08) (0.0 0 08) (0.0017) (0.0013) 

λD 0.0367 i −0.2449 i −0.2022 i −0.0917 i 0.1895 i 

λWD 0.0125 0.0256 ∗∗∗ 0.0197 ∗∗∗ 0.0173 ∗ 0.0060 

(0.0091) (0.0070) (0.0061) (0.0103) (0.0062) 

RMSPE 25.7 [0.34] 23.6 [0.31] 19.8 [0.31] 18.8 [0.26] 22.6 [0.30] 

Panel C: GDA5 

λW 0.0078 ∗∗∗ 0.0068 ∗∗∗ 0.0064 ∗∗∗ 0.0069 ∗∗∗ 0.0072 ∗∗∗

(0.0015) (0.0 0 08) (0.0 0 07) (0.0017) (0.0 0 09) 

λD −0.1825 i −0.1673 i −0.1717 i −0.0778 i 0.1363 i 

λWD 0.0261 ∗∗ 0.0202 ∗∗ 0.0171 ∗∗∗ 0.0181 ∗ 0.0135 ∗

(0.0114) (0.0094) (0.0063) (0.0105) (0.0070) 

λX −0.0021 i −0.0018 i −0.0012 i −0.0024 i −0.0035 i 

λXD −0.0036 i −0.0023 i −0.0017 i −0.0026 i −0.0040 i 

a 0.8462 0.4692 0.5335 0.3275 1.2827 

(0.5485) (1.0453) (0.7009) (0.5046) (1.1586) 

RMSPE 21.4 [0.28] 20.7 [0.27] 18.7 [0.29] 17.5 [0.24] 16.9 [0.22] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

also used as test assets. Note that if multiple asset classes

are included, each asset class is represented with the same

number of portfolios, so that they have similar importance

in the estimation. Panel A of Table 2 presents the CAPM.

The market risk premium, λW 

, is positive for all five sets

of portfolios. Panel B corresponds to the GDA3. All risk

premiums have the expected signs, and all the estimated

risk premiums are statistically significant. Panel C presents

result for the GDA5. Similar to the GDA3, all risk premi-

ums have the expected signs, and all the estimated risk

premiums are statistically significant. 8 
8 To put the magnitudes of the risk premium estimates into perspec- 

tive, we compare them to the corresponding values implied by the as- 

set pricing model of Section 2 , calibrated as in Bonomo et al. (2011) . In 

summary, despite the correct signs, estimates of market downside risk 

premium, volatility risk premium, and volatility downside risk premium 

of Tables 1 and 2 are larger than what the calibrated model can actu- 

ally replicate. We argue that this is due to potential estimation biases 

that may come from different sources, in particular when portfolios are 

used as test assets, as discussed in Ang et al. (2017) and Gagliardini et al. 

(2016) . To verify our assertion, we also estimate the factor risk premiums 

using a large cross-section of individual stocks as test assets. We find that 

the risk premium estimates obtained with individual stocks are close to 

the calibration-implied values. A detailed description and discussion of 

these findings can be found in Section A.8 of the Online Appendix. 

 

 

 

 

 

 

 

 

To facilitate model comparison, both Tables 1 and

2 report the root-mean-squared-pricing error (RMSPE) of

the models, expressed in basis points (bps) per month,

and the ratio of RMSPE to root-mean-squared returns (in

brackets after the RMSPE values). The GDA3 provides a

better fit than the CAPM for all sets of test assets, and

the improvement is considerable in several cases. For

example, the RMSPE reduces from 39 to 24 bps in case

of the size-momentum stock portfolios, reduces from 44

to 12 bps for the option portfolios, and reduces from 50

to 20 bps when all three asset classes are included in the

estimation. The GDA5 provides further improvement com-

pared to GDA3 for all the ten sets of portfolios presented

in Tables 1 and 2 . 

Fig. 1 shows scatter plots of actual versus predicted

returns, corresponding to the case when all three asset

classes are included in the estimation. 9 Panel A highlights

the failure of the CAPM to price our test portfolios. Within

each asset class, the actual returns vary considerably,

but the CAPM predicts similar returns for all portfolios.
9 In particular, the scatter plots in the top row of Fig. 1 correspond to 

the last column of Table 2 . The Online Appendix contains scatter plots 

similar to the ones in Fig. 1 for several other sets of portfolios. 
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Table 2 

Risk premiums for the CAPM and GDA models using further asset classes. The table shows risk premium estimates 

for the CAPM and GDA models using various sets of test assets: (i) 54 index option portfolios from Constantinides 

et al. (2013) ; (ii) 25 (5 × 5) size/book-to-market and 24 index option portfolios; (iii) 25 (5 × 5) size/momentum and 24 

index option portfolios; (iv) 6 size/book-to-market, 6 option, and 6 currency (from Lettau et al., 2014 ) portfolios; and 

(v) 6 size/momentum, 6 option, and 6 currency portfolios. We use monthly data and the sample period varies across 

the different sets of portfolios. The sample periods and data sources are described in Appendix A . The premiums are 

estimated using GMM. Standard errors are in parentheses, and ∗ , ∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 

1% levels. Values with the superscript i are imposed by the restriction that the market portfolio should be correctly 

priced (and by cross-price restrictions for the GDA5). RMSPE is the root-mean-squared pricing error of the model in 

basis points per month and the RMSPE to root-mean-squared returns ratio is reported in brackets. 

Stocks 25 S × BM 25 S × Mom 6 S × BM 6 S × Mom 

Options 54 24 24 6 6 

Currencies 6 6 

Panel A: CAPM 

λW 0.0053 i 0.0053 i 0.0053 i 0.0051 i 0.0051 i 

RMSPE 43.8 [0.71] 39.8 [0.57] 42.4 [0.60] 49.4 [0.70] 50.3 [0.71] 

Panel B: GDA3 

λW 0.0068 ∗∗∗ 0.0067 ∗∗∗ 0.0067 ∗∗∗ 0.0066 ∗∗∗ 0.0064 ∗∗∗

(0.0 0 06) (0.0 0 04) (0.0 0 04) (0.0 0 05) (0.0 0 05) 

λD −0.1672 i −0.1442 i −0.1863 i −0.2294 i −0.2884 i 

λWD 0.0179 ∗∗∗ 0.0166 ∗∗∗ 0.0178 ∗∗∗ 0.0205 ∗∗∗ 0.0210 ∗∗∗

(0.0059) (0.0056) (0.0041) (0.0053) (0.0044) 

RMSPE 11.9 [0.19] 21.5 [0.31] 21.1 [0.30] 20.5 [0.29] 19.8 [0.28] 

Panel C: GDA5 

λW 0.0070 ∗∗∗ 0.0070 ∗∗∗ 0.0067 ∗∗∗ 0.0069 ∗∗∗ 0.0065 ∗∗∗

(0.0 0 08) (0.0 0 09) (0.0 0 05) (0.0 0 07) (0.0 0 08) 

λD −0.2927 i −0.2250 i −0.1974 i −0.3753 i −0.3418 i 

λWD 0.0228 ∗∗∗ 0.0201 ∗∗∗ 0.0179 ∗∗∗ 0.0265 ∗∗∗ 0.0222 ∗∗∗

(0.0035) (0.0057) (0.0047) (0.0060) (0.0066) 

λX −0.0 0 06 i −0.0 0 07 i −0.0012 i −0.0 0 01 i −0.0 0 02 i 

λXD −0.0017 i −0.0020 i −0.0016 i −0.0014 i −0.0 0 07 i 

a 0.5820 0.7026 0.3816 0.5259 0.3170 

(0.6764) (0.8943) (0.9693) (0.4416) (0.5694) 

RMSPE 10.0 [0.16] 19.1 [0.27] 18.8 [0.27] 18.6 [0.26] 17.3 [0.24] 
Consequently, portfolios within each asset class line up 

close to a vertical line. The improvement in fit is evident 

when we move from the CAPM to the GDA3 in Panel B, 

where the portfolios lie much closer to the 45-degree line. 

Finally, the portfolios line up almost perfectly along the 

45-degree line in Panel C, which corresponds to the GDA5. 

In Section A.7 of the Online Appendix, we provide a 

detailed discussion on why the GDA model is successful in 

pricing the option portfolios of Constantinides et al. (2013) . 

We rely on option Greeks to study how the sensitivity of 

the option price to the underlying price and to volatility 

varies with option moneyness when disappointment sets 

in. Portfolios containing out-of-the-money (OTM) calls 

have the lowest sensitivity to the price of the underlying, 

conditional on disappointment. They are followed by 

portfolios with in-the-money (ITM) calls, then ITM puts, 

and portfolios with OTM puts have the highest sensitivity. 

When considering the sensitivity to volatility conditional 

on disappointment, the ordering is reversed: portfolios 

containing OTM puts have the lowest sensitivity and 

portfolios with OTM calls have the highest. Since market 

downside risk carries a positive premium and volatility 
downside risk carries a negative premium, these imply 

that the GDA model predicts the lowest return for the 

OTM call portfolios and the highest return for the OTM 

put portfolios, which is in line with the data. 

Daniel and Moskowitz (2016) argue that momentum 

profits are linked to the option-like behavior of the mo- 

mentum strategy. Clarida et al. (2009) show that currency 

carry trade strategies resemble the payoff and risk char- 

acteristics of currency option strategies. These results, 

together with our previous discussion on option portfolios, 

may explain why the GDA model is also successful in 

pricing the momentum equity and currency portfolios. 

3.2.1. Disappointing states 

Panel A of Fig. 2 plots the market return and the NBER 

recession periods for our longest sample starting in July 

1964 and ending in December 2016. The horizontal line 

indicates a 3% drop in the market index. According to 

the simple definition D At ≡ { r W,t < −0 . 03 } , disappointing 

months are those when the market return is below this 

line. Out of 630 months in the sample, 102 are classified 

as disappointing, giving a 16.2% unconditional proba- 

bility of disappointment. There are 90 NBER recession 
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Fig. 1. Actual versus predicted returns. The scatter plots show the realized average excess returns against the predicted excess returns from various models 

for six size/momentum, six option, and six currency portfolios, together with the market return (see the legend in Panel A). The portfolios and the corre- 

sponding data sources are described in Appendix A . The sample period is from April 1986 to March 2010. The corresponding risk premium estimates are 

reported in the last column of Table 2 (CAPM; GDA3; and GDA5) and Table 4 (VOL; Ang et al., 2006a; Lettau et al., 2014 ; Carhart, 1997 ). 

 

 

 

 

 

 

 

 

months during this period, out of which 28 are classi-

fied as disappointing. This implies a 31.1% probability of

disappointment conditional on being in recession, and a

13.7% probability of disappointment conditional on being

outside of recession. There is a clear positive relationship
between recessions and disappointing states as the condi-

tional probability of disappointment more than doubles in

recession periods. 

Panel B of Fig. 2 shows the value of r W t − a 
σW 

σX 
�σ 2 

W t 

with a = 0 . 5 for the same period. We use a = 0 . 5 since
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Fig. 2. Disappointing states. Panel A shows the monthly market return ( r W, t ). Disappointing months defined by D At ≡ { r W,t < −0 . 03 } are those when the 

market return is below the horizontal line indicating the −3% level. Panel B shows the monthly value of r Wt − 0 . 5 σW 

σX 
�σ 2 

Wt . Disappointing months defined 

by D Bt ≡ { r Wt − 0 . 5 σW 

σX 
�σ 2 

Wt < −0 . 03 } are those when the value of this linear combination falls below the horizontal line in Panel B. The diamond markers 

in Panel B indicate months that are disappointing according to D At but not disappointing according to D Bt . The round markers in Panel B indicate months 

that are disappointing according to D Bt but not disappointing according to D At . Panel C shows quarterly consumption growth and the round markers 

indicate quarters with at least two disappointing months. The sample period in all panels is from July 1964 to December 2016, and the shaded intervals 

correspond to the NBER recessions. 
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most of the estimated values in Tables 1 and 2 are around

this value. The horizontal line is at −0 . 03 , and disappoint-

ing states are defined D Bt ≡
{ 

r W t − 0 . 5 
σW 

σX 
�σ 2 

W t < −0 . 03 

} 

.

The disappointment definitions in Panel A and Panel B are

empirically close to each other. Out of 630 months, 101

are classified as disappointing according to D Bt , giving a

16.0% unconditional probability of disappointment. There

are only ten months in the sample that are disappoint-

ing according to D At but not disappointing according to

D Bt ; these are highlighted with the diamond markers in

Panel B. At the same time, there are nine months that

are disappointing according to D Bt but not disappointing

according to D At ; these are highlighted with the round

markers in Panel B. 

The main reason for D At and D Bt being empirically

close is that decreasing market return and increasing mar-

ket volatility tend to coincide empirically; which is also

known as the leverage effect. That is, even if increasing

market volatility is not explicitly included in the definition,

disappointment tends to be accompanied with increasing

volatility. In the period from July 1964 to December 2016,

the unconditional correlation between r Wt and �σ 2 
W t is

-0.25 in our sample. Their conditional correlation (con-

ditional on being in the disappointing state according to

D At ) is even stronger, -0.46. Extreme volatility increases

also happen in disappointing months when disappoint-

ment is defined as r W t < −0 . 03 . Nine of the largest ten

�σ 2 
W t 

values in our stock sample period are realized in

disappointing months (and 16 of the largest 20). 

Finally, Panel C of Fig. 2 shows quarterly consumption

growth throughout the period, and the round markers in-

dicate quarters with two or three disappointing months. 10

Out of the 209 quarters in the sample, there are 20 in

which at least two out of three months within the quarter

are disappointing. Quarters with multiple disappointing

months are associated with a higher probability of declin-

ing consumption. There are 16 quarters with negative con-

sumption growth and seven of them have multiple disap-

pointing months. These values imply that the conditional

probability of declining consumption is 35.0% if there are

two or more disappointing months in a given quarter, and

only 4.8% if there is at most one disappointing month. 

3.2.2. Risk premium estimates without restrictions 

Table 3 shows risk premium estimates for selected sets

of test portfolios when we do not impose the restriction

that the market should be perfectly priced. 11 Thus, the

downstate premium is not imposed, but is estimated as a

free parameter in Table 3 . Panels A and B correspond to
10 Aggregate consumption growth is calculated using quarterly data on 

Personal Consumption Expenditures (PCE) from the U.S. Bureau of Eco- 

nomic Analysis. Aggregate consumption is defined on a per capita ba- 

sis as services plus non-durables. We use seasonally adjusted series and 

deflate aggregate consumption by the PCE price index (the base year 

is 2009). The consumption growth data are available until 2016Q3. The 

round markers indicate quarters with two or three disappointing months 

according to D At . Note, however, that exactly the same plot arises if D Bt 

is used instead. 
11 In order to save space, results for the other five sets of portfolios are 

presented in the Online Appendix. Those results lead to very similar con- 

clusions to the ones presented in Table 3 . 

 

 

 

 

 

 

 

 

 

 

 

the GDA3 and GDA5 models, respectively. The estimated

risk premiums have the expected signs and their mag-

nitudes are similar to those reported for our benchmark

specifications in Tables 1 and 2 . The λD estimate is statis-

tically significant in all but one of the cases. Also note that

the model fit is better if we do not impose the restriction

on the market portfolio, as the number of free parameters

increases. 

The GDA5 model can also be estimated without impos-

ing any cross-price restrictions on the risk premiums and

assuming that the disappointing event is of the simple

form D t = { r W,t < −0 . 03 } . We refer to this specification

as the “unrestricted GDA5.” The unrestricted GDA5 has a

couple of advantages compared to our main GDA5 speci-

fication. First, it is easier to estimate because there are no

cross-price restrictions to be imposed and the definition

of disappointment is fixed (i.e., the parameter a does not

have to be estimated). Second, the GDA3 is nested in the

unrestricted GDA5, which facilitates a more direct com-

parison between the two models. Third, results from the

unrestricted GDA5 are also more comparable to previous

studies analyzing downside risk, since those studies also

define the downstate in terms of the market return only.

Panel C of Table 3 provides risk premium estimates for

the unrestricted GDA5. All risk premiums are statistically

significant and have the expected signs. Magnitudes of the

volatility-related risk premiums for the unrestricted GDA5

are somewhat higher than in the case of our benchmark

GDA5 specification, but the magnitudes of the other pre-

miums are reasonably similar. In terms of model fit, the

unrestricted GDA5 delivers lower pricing errors than the

other two models in Table 3 . Thus, the fourth advantage of

the unrestricted GDA5 is that it actually provides a better

fit than the other two GDA models. 

Despite all its advantages, we do not focus on the un-

restricted GDA5 throughout the paper, as it has one major

disadvantage compared to the GDA5: it is less related to

the theoretical predictions from Section 2.1 . Lewellen et al.

(2010) suggest that when theory provides predictions for

the risk price estimates, these predictions should be taken

seriously. 

3.2.3. Comparison to alternative models 

In this section we compare the fit of the GDA models

to alternative models proposed in previous literature.

Table 4 presents results corresponding to four alternative

models using the same five sets of portfolios as in Table 3 .

Results for the other sets of portfolios are relegated to the

Online Appendix and lead to very similar conclusions to

those presented in Table 4 . 

The model in Panel A, labeled as “VOL,” contains only

two priced factors: market return and market volatility.

The VOL model can be viewed as a restricted version of

the GDA5 that arises if the representative agent is not

disappointment averse. The results in Panel A show that

volatility risk carries a negative premium. Pricing errors

decrease compared to the CAPM, but the size of the im-

provement varies across different asset classes. The RMSPE

barely decreases in case of the stock portfolios, but the im-

provement is considerable in case of the option portfolios

(from 44 to 14 bps) and when all three asset classes are
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Table 3 

Risk premiums when the perfect market pricing restriction is not imposed. The table shows risk premium estimates 

for GDA models using various sets of test portfolios (the same sets of portfolios as in Table 4 ) without imposing the 

restriction that the market portfolio is perfectly priced. We use monthly data and the sample periods and data sources 

are described in Appendix A . The premiums are estimated using GMM. Standard errors are in parentheses, and ∗ , 
∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels. Values with the superscript i are imposed by cross-price 

restrictions for the GDA5. RMSPE is the root-mean-squared pricing error of the model in basis points per month and 

the RMSPE to root-mean-squared returns ratio is reported in brackets. 

Stocks 25 S × BM 25 S × Mom 6 S × BM 6 S × Mom 

Options 54 6 6 

Currencies 6 6 

Panel A: GDA3 

λW 0.0069 ∗∗∗ 0.0078 ∗∗∗ 0.0056 ∗ 0.0070 ∗∗ 0.0070 ∗∗

(0.0022) (0.0021) (0.0032) (0.0032) (0.0034) 

λD −0.0473 −0.3519 ∗∗∗ −0.2438 ∗∗∗ −0.2200 ∗∗ −0.2783 ∗∗∗

(0.0896) (0.1247) (0.0606) (0.0940) (0.1015) 

λWD 0.0103 0.0272 ∗∗∗ 0.0185 ∗∗∗ 0.0204 ∗∗∗ 0.0210 ∗∗∗

(0.0067) (0.0067) (0.0045) (0.0047) (0.0044) 

RMSPE 24.8 [0.33] 21.8 [0.29] 11.6 [0.19] 20.3 [0.29] 19.4 [0.27] 

Panel B: GDA5 

λW 0.0081 ∗∗∗ 0.0080 ∗∗∗ 0.0059 ∗ 0.0079 ∗∗ 0.0078 ∗∗∗

(0.0023) (0.0020) (0.0031) (0.0031) (0.0030) 

λD −0.2785 ∗ −0.3071 ∗∗∗ −0.3384 ∗∗∗ −0.3741 ∗∗∗ −0.3397 ∗∗

(0.1518) (0.1061) (0.0632) (0.1256) (0.1374) 

λWD 0.0262 ∗∗∗ 0.0238 ∗∗∗ 0.0229 ∗∗∗ 0.0273 ∗∗∗ 0.0241 ∗∗∗

(0.0093) (0.0065) (0.0035) (0.0056) (0.0058) 

λX −0.0012 i −0.0011 i −0.0 0 07 i 0.0 0 01 i −0.0 0 05 i 

λXD −0.0027 i −0.0016 i −0.0012 i −0.0016 i −0.0013 i 

a 0.8483 ∗∗ 0.4193 0.4008 ∗ 0.6212 ∗∗ 0.4324 

(0.3863) (0.3943) (0.2398) (0.2573) (0.3674) 

RMSPE 20.6 [0.27] 16.4 [0.22] 9.7 [0.16] 17.8 [0.25] 16.1 [0.23] 

Panel C: Unrestricted GDA5 

λW 0.0089 ∗∗∗ 0.0082 ∗∗∗ 0.0086 ∗∗∗ 0.0093 ∗∗∗ 0.0080 ∗∗∗

(0.0023) (0.0021) (0.0028) (0.0032) (0.0029) 

λD −0.6088 ∗∗∗ −0.2242 ∗∗ −0.3744 ∗∗∗ −0.3245 ∗∗∗ −0.1945 ∗

(0.1640) (0.1060) (0.0588) (0.1195) (0.1165) 

λWD 0.0355 ∗∗∗ 0.0205 ∗∗∗ 0.0312 ∗∗∗ 0.0279 ∗∗∗ 0.0157 ∗∗

(0.0094) (0.0061) (0.0062) (0.0065) (0.0074) 

λX −0.0050 ∗∗∗ −0.0025 ∗∗∗ −0.0022 ∗∗∗ −0.0032 −0.0035 ∗

(0.0011) (0.0 0 08) (0.0 0 06) (0.0020) (0.0020) 

λXD −0.0063 ∗∗∗ −0.0031 ∗∗∗ −0.0045 ∗∗∗ −0.0053 ∗∗ −0.0043 ∗∗

(0.0013) (0.0 0 08) (0.0012) (0.0026) (0.0019) 

RMSPE 18.7 [0.25] 15.4 [0.20] 9.3 [0.15] 11.1 [0.16] 13.1 [0.18] 
included (from 50 to 26 bps). It is more important for the 

current paper to compare the VOL and GDA3 models. The 

GDA3 delivers lower pricing errors than the VOL model 

for all five sets of portfolios, and the improvement in fit 

can be considerable as in the case of the size/momentum 

stock portfolios (from 35 to 24 bps) and when all three 

asset classes are included (from 26 to 20 bps). 

The cross-sectional implications of market downside 

risk have been previously studied by Ang et al. (2006a) and 

Lettau et al. (2014) . These authors propose slightly differ- 

ent models to incorporate the effect of market downside 

risk. More importantly, it can be shown that our GDA3 

specification nests the models from both of these studies, 

with different restrictions on the value of λD . Ang et al. 

(2006a) specify the model for expected returns as 

E 
[
R 

e 
it 

]
= λ+ β+ 

i 
+ λ−β−

i 
, with 
β+ 
i 

= 

Cov 
(
R 

e 
it 
, r W t | U t 

)
V ar ( r W t | U t ) 

and β−
i 

= 

Cov 
(
R 

e 
it 
, r W t | D t 

)
V ar ( r W t | D t ) 

, 

(19) 

where U refers to the upside event, which is the comple- 

ment of the disappointing event D. The model in (19) is 

equivalent to the GDA3 in (16) with 

λW 

= λ+ + λ−, λD = 0 , λW D = λ−. (20) 

That is, the model proposed by Ang et al. (2006a) imposes 

the restriction λD = 0 . On the other hand, Lettau et al. 

(2014) propose 

E 
[
R 

e 
it 

]
= λβi + λ−(

β−
i 

− βi 

)
, (21) 

where β i is the CAPM beta and β−
i 

is the same downside 

beta as in (19) . The specification in (21) is equivalent to 
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Table 4 

Risk premiums for alternative models. The table shows risk premium estimates for different models using various sets 

of test assets: (i) 25 (5 × 5) size/book-to-market portfolios; (ii) 25 (5 × 5) size/momentum portfolios; (iii) 54 index op- 

tion portfolios from Constantinides et al. (2013) ; (iv) 6 size/book-to-market, 6 option, and 6 currency (from Lettau et al., 

2014 ) portfolios; and (v) 6 size/momentum, 6 option, and 6 currency portfolios. We use monthly data and the sample 

periods and data sources are described in Appendix A . The premiums are estimated using GMM. Standard errors are 

in parentheses, and ∗ , ∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels. Values with the superscript i are 

imposed by the restriction that the market portfolio should be correctly priced (and by the restriction in (20) and (22) 

for the models in Panel B and Panel C, respectively). RMSPE is the root-mean-squared pricing error of the model in 

basis points per month and the RMSPE to root-mean-squared returns ratio is reported in brackets. 

Stocks 25 S × BM 25 S × Mom 6 S × BM 6 S × Mom 

Options 54 6 6 

Currencies 6 6 

Panel A: VOL 

λW 0.0054 ∗∗∗ 0.0054 ∗∗∗ 0.0058 ∗∗∗ 0.0057 ∗∗∗ 0.0057 ∗∗∗

(0.0 0 05) (0.0 0 05) (0.0 0 01) (0.0 0 02) (0.0 0 02) 

λX −0.0023 i −0.0024 i −0.0030 i −0.0035 i −0.0036 i 

RMSPE 25.9 [0.34] 35.4 [0.46] 14.2 [0.23] 26.2 [0.37] 26.8 [0.38] 

Panel B: Ang et al. (2006a) 

λW 0.0066 ∗∗∗ 0.0070 ∗∗∗ 0.0070 ∗∗∗ 0.0072 ∗∗∗ 0.0072 ∗∗∗

(0.0017) (0.0 0 08) (0.0 0 05) (0.0 0 06) (0.0 0 05) 

λD 0 i 0 i 0 i 0 i 0 i 

λWD 0.0140 i 0.0169 i 0.0138 i 0.0175 i 0.0171 i 

RMSPE 25.8 [0.34] 28.3 [0.37] 19.5 [0.31] 25.9 [0.36] 28.4 [0.40] 

Panel C: Lettau et al. (2014) 

λW 0.0065 ∗∗∗ 0.0066 ∗∗∗ 0.0069 ∗∗∗ 0.0073 ∗∗∗ 0.0071 ∗∗∗

(0.0016) (0.0 0 09) (0.0 0 06) (0.0 0 06) (0.0 0 05) 

λD 0.0557 i 0.0607 i 0.0531 i 0.0896 i 0.0835 i 

λWD 0.0116 i 0.0122 i 0.0112 i 0.0146 i 0.0140 i 

RMSPE 25.7 [0.34] 31.0 [0.41] 24.0 [0.39] 30.4 [0.43] 33.3 [0.47] 

Panel D: Carhart (1997) 

λW 0.0054 ∗∗∗ 0.0052 ∗∗∗ 0.0059 ∗∗∗ 0.0054 ∗∗∗ 0.0053 ∗∗∗

(0.0 0 02) (0.0 0 0 0) (0.0 0 04) (0.0 0 04) (0.0 0 01) 

λSMB 0.0026 i 0.0020 i 0.0117 i 0.0023 i 0.0023 i 

λHML 0.0047 ∗∗∗ 0.0076 ∗∗ 0.0451 0.0041 0.0102 

(0.0014) (0.0034) (0.0372) (0.0026) (0.0106) 

λWML 0.0254 0.0073 ∗∗∗ 0.0018 0.0168 0.0064 

(0.0203) (0.0021) (0.0181) (0.0335) (0.0039) 

RMSPE 11.2 [0.15] 13.9 [0.18] 19.4 [0.31] 45.6 [0.64] 44.4 [0.63] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12 Without the restriction that market portfolio should be priced 

perfectly, estimating λ+ and λ− from (19) using the Fama–MacBeth 

(1973) procedure and applying the transformations in (20) leads to the 

same λ values as estimating the GDA3 using GMM with the restriction 

λD = 0 . Similarly, estimating λ and λ− from (21) using the Fama–MacBeth 

(1973) procedure and applying the transformations in (22) leads to the 

same λ values as estimating the GDA3 using GMM with the restriction 

on λD from (22) . In Panels B and C of Table 4 , we also impose the restric- 

tion that market portfolio should be correctly priced. 
the GDA3 in (16) with 

λW 

= λ, λD = 

γ2 

1 − γ1 
( λW 

− λW D ) , 

λW D = γ1 λ + ( 1 − γ1 ) λ
−, (22)

where 

γ1 ≡ Cov ( r W t I ( D t ) , r W t ) 

V ar ( r W t ) 
, γ2 ≡ Cov ( I ( D t ) , r W t ) 

V ar ( r W t ) 
. (23)

That is, the model proposed by Lettau et al. (2014) imposes

λD = 

γ2 
1 −γ1 

( λW 

− λW D ) . The derivation of the above results

is shown in Appendix B . 

Panels B and C of Table 4 present risk premiums for

the models of Ang et al. (2006a) and Lettau et al. (2014) ,

respectively. The models are estimated using GMM, impos-

ing the linear restriction on λD during the estimation for
both models. 12 Note that the restriction imposed by the

model of Ang et al. (2006a) ( λD = 0 ) is rejected in four

out of five cases for the GDA3 model in Table 3 (where we

can assess the statistical significance of λD ), where λD is

negative and significantly different from zero. Comparing

model fit, the GDA3 model is always associated with lower

pricing errors than the model of Ang et al. (2006a) , and

the difference can be substantial, as in case of the option

portfolios (12 bps for the GDA3 in Table 2 and 20 bps
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Table 5 

Fit of models when the same risk premiums are used. The table shows the root-mean-squared pricing error (reported in basis points per month) of 

different models on different sets of portfolios when the same risk premiums are used across all sets. The shaded column in all three panels indicates 

which set is used for estimating the risk premiums. In Panel A, 10 size, 10 book-to-market, and 10 momentum portfolios are used to estimate the λ-s 

(third column of Table 1 ). In Panel B, 54 index option portfolios are used to estimate the λ-s (first column of Table 2 and third column of Table 4 ). In 

Panel C, 6 size/momentum, 6 option, and 6 currency portfolios are used to estimate the λ-s (last column of Tables 2 and 4 ). The test portfolios in the 

first five columns are the same as in Table 1 , while the test portfolios in the last five columns are the same as in Table 2 . Sample periods and data 

sources are described in Appendix A . Within each column the lowest RMSPE value is boldfaced and underlined, while the second lowest RMSPE value 

is boldfaced. 
for the Ang et al., 2006a model in Table 4 ) and in the 

case when all three asset classes are included (20 bps 

versus 28 bps). The model of Lettau et al. (2014) imposes 

a different restriction on λD , and as it can be seen in 

Panel C of Table 4 , all the implied λD values are positive. 

Since the downstate premium values are typically negative 

for the GDA3, this restriction is also not in line with the 

data. The Lettau et al. (2014) model provides a poorer 

fit than the other two models. The only exception is the 

size/book-to-market portfolios, where the RMSPE of the 

Lettau et al. (2014) model is marginally lower than the 

RMSPE of the Ang et al. (2006a) model (but not lower than 

that of the GDA3). In general, the models proposed by Ang 

et al. (2006a) and Lettau et al. (2014) impose restrictions, 
compared to the GDA3, that are not supported by the data. 

Panels E and F in Fig. 1 show scatter plots of actual versus 

predicted returns for the Ang et al. (2006a) and Lettau 

et al. (2014) models. These plots provide a visual evidence 

that the GDA3 has a better fit than the two nested models. 

Panel D of Table 4 corresponds to the four-factor model 

of Carhart (1997) , which is an important benchmark in the 

literature. The Carhart (1997) model does a good job in 

pricing the size/book-to-market and size/momentum port- 

folios. This is not surprising, as the four-factor model is 

tailor-made to price these stock portfolios correctly. When 

we consider other asset classes, the Carhart (1997) model 

is much less successful. When estimating the model using 

option portfolios, the pricing error is twice as much as 
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Table 6 

Risk premiums for the GDA models using additional asset classes. The 

table shows risk premium estimates for the GDA models when we add 

corporate bond, sovereign bond, and commodity futures portfolios to 

our benchmark set of test assets. The benchmark set of test assets con- 

sists of 6 stock portfolios (size/book-to-market), 6 option portfolios, and 

6 currency portfolios. We use monthly data and the sample periods and 

data sources are described in Appendix A . The premiums are estimated 

using GMM. Standard errors are in parentheses, and ∗ , ∗∗ , and ∗∗∗ denote 

significance at the 10%, 5%, and 1% levels. Values with the superscript i 

are imposed by the restriction that the market portfolio should be cor- 

rectly priced (and by cross-price restrictions for the GDA5). RMSPE is 

the root-mean-squared pricing error of the model in basis points per 

month and the RMSPE to root-mean-squared returns ratio is reported 

in brackets. 

Stocks 6 S × BM 6 S × BM 6 S × BM 6 S × BM 

Options 6 6 6 6 

Currencies 6 6 6 6 

Corp. bonds 5 5 

Sov. bonds 6 6 

Commodities 6 6 

Panel A: GDA3 

λW 0.0069 ∗∗∗ 0.0060 ∗∗∗ 0.0068 ∗∗∗ 0.0066 ∗∗∗

(0.0 0 04) (0.0 0 04) (0.0 0 07) (0.0 0 06) 

λD −0.1546 i −0.3238 i −0.1615 i −0.1472 i 

λWD 0.0201 ∗∗∗ 0.0193 ∗∗∗ 0.0198 ∗∗∗ 0.0178 ∗∗∗

(0.0055) (0.0051) (0.0053) (0.0052) 

RMSPE 21.5 [0.34] 26.2 [0.42] 23.2 [0.35] 28.1 [0.50] 

Panel B: GDA5 

λW 0.0067 ∗∗∗ 0.0063 ∗∗∗ 0.0066 ∗∗∗ 0.0066 ∗∗∗

(0.0 0 07) (0.0 0 06) (0.0 0 06) (0.0 0 05) 

λD −0.2592 i −0.3980 i −0.2009 i −0.1997 i 

λWD 0.0213 ∗∗∗ 0.0231 ∗∗∗ 0.0193 ∗∗∗ 0.0191 ∗∗∗

(0.0051) (0.0052) (0.0040) (0.0040) 

λX −0.0010 i −0.0 0 02 i −0.0014 i −0.0015 i 

λXD −0.0015 i −0.0 0 05 i −0.0017 i −0.0018 i 

a 0.3170 0.3115 0.2545 0.3171 

(0.6596) (0.3642) (0.6878) (0.5433) 

RMSPE 20.0 [0.31] 23.5 [0.37] 23.1 [0.35] 26.9 [0.47] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13 The corresponding results for alternative models are in the Online 

Appendix. Also note that stocks are represented by the six size/book-to- 

market portfolios in Table 6 . Results with the six size/momentum portfo- 

lios are in the Online Appendix. 
that of the GDA5 model, but even more importantly, the

estimated risk premiums change considerably compared

to the stock portfolios. In other words, the estimated risk

premiums are very different, when different asset classes

are used. Consequently, the Carhart (1997) model performs

badly when estimated using the three asset classes jointly:

only the CAPM provides higher RMSPE values. In general,

the four-factor model works well for pricing stock port-

folios, but it is less successful in pricing portfolios from

other asset classes. This is also illustrated in Panel G of

Fig. 1 . The stock portfolios line up along the 45-degree

line, but the portfolios from other asset classes do not. 

3.2.4. Variation in the risk premium estimates across test 

portfolios 

Risk premium estimates for all models vary across

different sets of test assets, and it is hard to tell whether

the variation we observe is substantial or not. To address

this concern, we carry out the following exercise: for

all the models, we take risk premium estimates from a

given set of test portfolios, and calculate out-of-sample
RMSPEs on the other sets of portfolios using these risk

premiums. In other words, we assess the model fit when

the same risk premium estimates are used across different

sets of test portfolios. The out-of-sample RMSPE values

are reported in Table 5 . The shaded column in all three

panels indicates which set is used for estimating the risk

premiums. In Panel A, the λ-s correspond to the case

when 30 stock portfolios consisting of ten size, ten book-

to-market, and ten momentum portfolios are used for the

estimation. Panel B corresponds to the case when 54 index

option portfolios are used for the estimation of the λ-s. In

Panel C, λ-s are estimated using six size/momentum, six

option, and six currency portfolios. 

The picture is very clear when considering sets that

do not solely include stock portfolios: the lowest pricing

errors are delivered by the GDA models, regardless of

which set of portfolios is used for estimation. In the last

five columns of Table 5 , the lowest RMSPE values in all

panels are produced by the GDA models, and the lowest

pricing error typically corresponds to the GDA5. When

considering stock-only sets in the first five columns of

Table 5 , the results are more mixed. In Panel A, where the

λ-s are estimated using stock portfolios only, the lowest

out-of-sample pricing errors are delivered by the Carhart

(1997) model. Nevertheless, the second lowest RMSPE

typically corresponds to the GDA5. In Panel B, where the

λ-s are estimated using option portfolios only, the lowest

out-of-sample pricing errors are typically delivered by

the GDA models. Note also that the out-of-sample RMSPE

values from the Carhart (1997) model are extremely high

in this case. Finally, there are no clear tendencies for

the stock-only sets in Panel C. Altogether, the results in

Table 5 show that the GDA models perform well even if

the same risk premiums are used across the different sets

of test portfolios. 

3.3. Robustness checks 

3.3.1. Additional portfolios as test assets 

In this section we add corporate bond, sovereign

bond, and commodity futures portfolios as test assets.

Five corporate bond portfolios, sorted annually on their

credit spread, are from Nozawa (2012) . Sovereign bond

and commodity futures portfolios are from Asness et al.

(2013) , who create three value and three momentum port-

folios in both asset classes. A more detailed description

of these portfolios and the data sources can be found in

Appendix A . Risk premium estimates for the GDA models

are reported in Table 6 . 13 The results are robust to the

addition of these asset classes. All the risk premiums

have the expected signs, and all the estimated risk premi-

ums are statistically significant. In terms of pricing error,

the GDA5 delivers lower RMSPE values than any of the

alternative models considered in the paper. 

We also consider the robustness of our results when

the same asset classes are used as in Table 2 , but different
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14 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data _ library. 

html 
15 Data are from Alexi Savov’s website at http://pages.stern.nyu.edu/ 

asavov/alexisavov/Alexi _ Savov.html . 
16 Data are from Michael Weber’s website at http://faculty.chicagobooth. 

edu/michael.weber . 
test portfolios are chosen to represent a given asset class. 

When stocks and options are jointly considered, we also 

use the size/operating-profit and size/investment portfolios 

to represent stocks. When stocks, options, and currencies 

are jointly considered, we use ten industry portfolios to 

represent stocks and also use six portfolios provided by 

Lustig et al. (2011) to represent currencies. The results, 

presented in the Online Appendix, show that the risk pre- 

mium estimates are robust to the choice of test portfolios. 

3.3.2. Changing the disappointment threshold 

The disappointment threshold is set to b = −0 . 03 

throughout the paper. As a robustness check, we con- 

sider the thresholds b ∈ { 0 , −0 . 015 , −0 . 04 } . The results 

and a more detailed assessment can be found in the 

Online Appendix, but we provide a brief summary here 

for the GDA5. The results remain very similar for the 

lower threshold ( b = −0 . 04 ). When the threshold is higher 

( b = −0 . 015 or b = 0 ), the risk premiums, with one ex-

ception, also remain similar to those in our benchmark 

specification. The exception is the downstate premium, λD , 
which comes closer to zero and can eventually turn into 

positive as the threshold increases. That is, disappointing 

events should be sufficiently out in the left tail so that 

the downstate factor commands a negative premium. In 

terms of model fit, the lowest RMSPE is typically provided 

by the models with low disappointment threshold (either 

b = −0 . 03 or b = −0 . 04 ). 

The results on the model fit have implications on 

the preference specification in our theoretical model. 

Recall that in the generalized disappointment aversion 

framework, parameter κ determines the level of the dis- 

appointment threshold relative to the certainty equivalent. 

Our results that the model fit is better when disappointing 

events are sufficiently out in the left tail suggest that we 

should consider κ < 1 in a representative agent setup. 

3.3.3. Alternative measures of market volatility 

We also consider how the risk premiums for the GDA5 

change if different measures of market volatility are used. 

Our alternative measures are the option-implied volatility 

index (VIX), realized volatility calculated from intra-daily 

market returns, and a model-implied volatility calculated 

using an Exponential GARCH specification. Details on 

how these alternative measures are calculated and the 

estimated risk premiums are presented in the Online 

Appendix. The conclusions are similar to our benchmark 

case, where monthly volatility is measured as realized 

volatility of the daily market returns during the month. 

The signs on the risk premiums are as expected, their 

magnitudes are similar, and the estimated premiums are 

statistically significant. The model fit is also similar across 

the different volatility measures. 

4. Conclusion 

This paper provides an analysis of downside risks in 

asset prices. Our empirical tests are motivated by the 

cross-sectional implications of a dynamic consumption- 

based general equilibrium model where the representative 
investor has generalized disappointment aversion prefer- 

ences and macroeconomic uncertainty is time-varying. We 

explicitly characterize the factors that are valued by an in- 

vestor in such setting. Besides the market return and mar- 

ket volatility, three disappointment-related factors are also 

priced: a downstate factor, a market downside factor, and a 

volatility downside factor. We also show that in addition to 

a fall in the market return, downside risk may also be as- 

sociated with a rise in market volatility. The empirical tests 

confirm that these factors are priced in the cross-section of 

various asset classes, including stocks, options, currencies, 

Treasury bonds, corporate bonds, and commodity futures. 

The related literature has mainly focused on the time 

series implications of this general equilibrium setting, 

discussing the preference parameter values necessary to 

match empirical regularities in equity returns, risk-free 

rate, variance premium, and options. Estimating these 

preference parameter values to jointly target both the time 

series and the cross-section of asset returns constitutes an 

interesting avenue for future research. 

Appendix A. Data 

Return data on US stock portfolios are from Kenneth 

French’s data library. 14 We use various sets of stock portfo- 

lios in our tests. The sample period for the stock portfolios 

is from July 1964 to December 2016. 

Index option returns are from Constantinides et al. 

(2013) . 15 They construct a panel of S&P 500 index option 

portfolios. The data set contains leverage-adjusted (that 

is, with a targeted market beta of one) monthly returns 

of 54 (2 × 3 × 9) option portfolios split across two types 

(call and put), three targeted time to maturities (30, 60, 

or 90 days), and nine targeted moneyness levels (10% ITM, 

7.5% ITM, 5% ITM, 2.5% ITM, ATM, 2.5% OTM, 5% OTM, 

7.5% OTM, and 10% OTM). The option data are available 

from April 1986 to January 2012. In estimations when we 

use only 24 (2 × 3 × 4) option portfolios, we use only a 

subset of the portfolios corresponding to two types (call 

and put), three maturities (30, 60, or 90 days), and four 

moneyness levels (5% ITM, ATM, 5% OTM, and 10% OTM). 

In cases when we use only six (2 × 3) option portfolios, 

these contain short maturity (30 days) options split across 

two types (call and put) and three moneyness levels (ATM, 

5% OTM, and 10% OTM). 

Currency returns are from Lettau et al. (2014) , who 

use monthly data on 53 currencies to create six portfolios 

by sorting them in ascending order of their respective 

interest rates. 16 The sixth (highest interest rate) portfolio 

is split into two baskets, 6A and 6B, and portfolio 6B has 

currencies with annualized inflation at least 10% higher 

than US inflation in the same month. We follow Lettau 

et al. (2014) and use the 6A portfolio to obtain our results. 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://pages.stern.nyu.edu/asavov/alexisavov/Alexi_Savov.html
http://faculty.chicagobooth.edu/michael.weber
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Currency returns are available from January 1974 to March

2010. 

Corporate bond portfolios, sorted annually on their

credit spread, are from Nozawa (2012) . Five portfolios

are obtained by equally weighting the ten portfolios

in the benchmark analysis of Nozawa (2012) into five

baskets. 17 The corporate bond returns are available from

October 1975 to March 2010. 

Sovereign bond portfolios are from Asness et al.

(2013) who sort government bond indexes into three

portfolios based on value and three portfolios based on

momentum, separately. We use all six portfolios in our

estimation. 18 The portfolio returns are available from

January 1983 to December 2016. 

Commodity futures portfolios are also from Asness

et al. (2013) who sort commodity futures into three

portfolios based on value and three portfolios based

on momentum, separately. We use all six portfolios in

our estimation. The portfolio returns are available from

January 1972 to December 2016. 

In cases when multiple asset classes are used at the

same time, the sample period is always the longest possi-

ble period for which all asset classes have data available. 

Appendix B. The GDA3 and nested models 

To calculate betas in the GDA3 model, the following

regression is estimated: 

R 

e 
it = αi + βiW 

r W t + βi D I ( D t ) + βiW D r W t I ( D t ) + ε it . (B.1)

The mechanics of the ordinary least squares (OLS) implies

E [ ε it ] = E [ ε it r W t ] = E [ ε it I ( D t ) ] = E [ ε it r W t I ( D t ) ] = 0 , where

εit denotes residuals from the estimation. Then, with the

estimated αi and β i -s, 

E 
[
R 

e 
it 

]
= αi + βiW 

E [ r W t ] + βi D π + βiW D E [ r W t | D t ] π (B.2)

E 
[
R 

e 
it r W t 

]
= αi E [ r W t ] + βiW 

E 
[
r 2 W t 

]
+ βi D E [ r W t | D t ] π

+ βiW D E 
[
r 2 W t | D t 

]
π (B.3)

E 
[
R 

e 
it | D t 

]
= ( αi + βi D ) + ( βiW 

+ βiW D ) E [ r W t | D t ] (B.4)

E 
[
R 

e 
it r W t | D t 

]
= ( αi + βi D ) E [ r W t | D t ] 

+ ( βiW 

+ βiW D ) E 
[
r 2 W t | D t 

]
, (B.5)

where π ≡ E [ I ( D t ) ] is the unconditional probability of

disappointment. Also note that the occurrence of the

upside event, the complement of the disappointing event,

can be written as I ( U t ) = 1 − I ( D t ) , hence (B.1) can be

rewritten as 

R 

e 
it = αi + βiW 

r W t + βiW D r W t · [ 1 − I ( U t ) ] 
17 Data are from Michael Weber’s website, from the replication data set 

connected to Lettau et al. (2014) . 
18 An updated and extended version of the portfolios used by Asness 

et al. (2013) is available from the website of AQR Capital Management at 

https://www.aqr.com/library/data-sets . 

 

 

 

 

+ βi D [ 1 − I ( U t ) ] + ε it 

= ( αi + βi D ) + ( βiW 

+ βiW D ) r W t − βiW D r W t · I ( U t ) 

− βi D I ( U t ) + ε it . (B.6)

Again, the mechanics of the OLS, namely, E [ ε it I ( U t ) ] =
E [ ε it r W t I ( U t ) ] = 0 , gives us 

E 
[
R 

e 
it |U t 

]
= αi + βiW 

E [ r W t |U t ] (B.7)

E 
[
R 

e 
it r W t |U t 

]
= αi E [ r W t |U t ] + βiW 

E 
[
r 2 W t |U t 

]
. (B.8)

Using (B.4) and (B.5) , it can be shown that the market

downside beta is 

β−
i 

≡
Cov 

(
R e 

it 
, r Wt |D t 

)
V ar ( r Wt |D t ) 

= 

E 
[
R e 

it 
r Wt |D t 

]
− E 

[
R e 

it 
|D t 

]
E [ r Wt |D t ] 

V ar ( r Wt |D t ) 
= βiW 

+ βiWD . (B.9)

Using (B.7) and (B.8) , the upside beta is 

β+ 
i 

≡
Cov 

(
R e 

it 
, r Wt |U t 

)
V ar ( r Wt |U t ) 

= 

E 
[
R e 

it 
r Wt |U t 

]
− E 

[
R e 

it 
|U t 

]
E [ r Wt |U t ] 

V ar ( r Wt |U t ) = βiW 

. (B.10)

Finally, using (B.2) and (B.3) it can be shown that 

ov 
(
R e it , r Wt 

)
= βiW 

V ar ( r Wt ) + βiWD Cov ( r Wt I ( D t ) , r Wt ) 

+ βi D Cov ( I ( D t ) , r Wt ) . (B.11)

Hence, the CAPM beta is 

βi ≡
Cov 

(
R e 

it 
, r Wt 

)
V ar ( r Wt ) 

= βiW 

+ βiWD 
Cov ( r Wt I ( D t ) , r Wt ) 

V ar ( r Wt ) ︸ ︷︷ ︸ 
≡γ1 

+ βi D 
Cov ( I ( D t ) , r Wt ) 

V ar ( r Wt ) ︸ ︷︷ ︸ 
≡γ2 

. (B.12)

Using (B.9) and (B.10) , the model in (19) can be written as

E 
[
R e it 

]
= λ+ β+ 

i 
+ λ−β−

i 
= 

(
λ+ + λ−)

βiW 

+ λ−βiWD . (B.13)

Using (B.9) and (B.12) , the model in (21) can be written

as 

E 
[
R e i 

]
= λβi + λ−(

β−
i 

− βi 

)
= λβiW 

+ 

(
γ1 λ + ( 1 − γ1 ) λ

−)
βiWD + γ2 

(
λ − λ−)

βi D . 

(B.14)
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