

The CAPM strikes back? An equilibrium model with disasters

JFE 131 2019(2) 269-298

The CAPM strikes back? An equilibrium model with disasters

The CAPM strikes back? An equilibrium model with disasters

JFE 131 2019(2) 269-298

Hang Bai^{*a*}, Kewei Hou^{b,c},Howard Kung^{d,e} ,Erica X.N. Li^f, Lu Zhang^{*b,g*,*}

a School of Business, University of Connecticut, USA b Fisher College of Business, Ohio State University, USA c China Academy of Financial Research (CAFR), China d London Business School, UK e The Center for Economic and Policy Research (CEPR), USA f Cheung Kong Graduate School of Business, China g National Bureau of Economic Research (NBER), USA

张橹 Lu Zhang

Academic Background

- **PhD** in Finance from The Wharton School, University of Pennsylvania, 2002
- MA in Economics from Washington University (St. Louis), 1997
- **BA** in Economics from Jiangxi University of Finance and Economics, 1993

Current Appointments

Professor of Finance, at Fisher College of Business, The Ohio State University

Research Associate at National Bureau of Economic Research **Associate Editor** for Journal of Financial Economics and Journal of Financial and Quantitative Analysis

Aggregation, capital heterogeneity, and the investment CAPM (with Goncalves and Xue), forthcoming, Review of Financial Studies
Replicating anomalies (with Hou and Xue), forthcoming, Review of Financial Studies
Endogenous disasters (with Petrosky-Nadeau and Kuehn), American Economic Review 108

(8), 2212-2245.

The investment CAPM, European Financial Management 23 (4), 545-603. **Digesting anomalies: An investment approach** (with Hou and Xue), 2015, Review of Financial Studies, 28 (3), 650-705. Editor's Choice, lead article.

侯恪惟 Kewei Hou

教育背景:
博士学位: 芝加哥大学金融学, 2002
学士学位: 中国科学技术大学电子工程学, 1995
当前任职:
金融学教授-俄亥俄州立大学 菲舍尔商学院
金融学特聘教授-上海高级金融学院
主要研究领域:资产定价、市场效率、行为金融学、实证公司金融、
资本市场会计研究

在国际顶级期刊 Journal of Finance, Journal of Financial Economics, Review of Financial Studies, Journal of Accounting and Economics和 Management Science等发表多篇论文

1. Jack Bao, Kewei Hou, 2017, **De Facto Seniority, Credit Risk, and Corporate Bond Prices**, *Review of Financial Studies*.

2. Hou, Kewei, and Roger K. Loh, 2016, Have We Solved the Idiosyncratic Volatility **Puzzle?**, *Journal of Financial Economics*.

3. Hou, Kewei, Chen Xue, and Lu Zhang, 2015, **Digesting Anomalies: An Investment Approach**, *Review of Financial Studies*.

Howard Kung 霍华德·孔

Academic Background

- **BA**, in Mathematics from University of Virginia, 2001-2005
- **PhD**, in Finance from Duke University, 2006-2012 **Current Appointments**

Assistant Professor of Finance, London Business School Research interest

the intersection of asset pricing and macroeconomics

1. "**Growth Slowdowns and Recoveries**" (with F. Bianchi and G. Morales). Journal of Monetary Economics, Accepted

2. **"How Uncertainty Affects Corporate Investment: The Asset Redeployability Channel**" (with H. Kim). Review of Financial Studies, January 2017

3. "Macroeconomic Linkages between Monetary Policy and the Term Structure of Interest Rates". Journal of Financial Economics, January 2015

4. "**Innovation, Growth and Asset Prices**" (with L. Schmid). Journal of Finance, June 2015 5. "**Fiscal Policies and Asset Prices**" (with M. Croce, T. Nguyen and L. Schmid) Review of Financial Studies, September 2012 (lead article).

Hang Bai

Academic Background

- **PhD**, Finance, The Ohio State University ,2016
- MA, Business Administration, Duke University,2012
- MS, Engineering, University of California,2008
- BE, Engineering, Tsinghua University,2007

Current Appointments

Assistant Professor of Finance, School of Business, University of Connecticut

Research interest

asset pricing, credit risk, macro finance, and international finance

Working paper "Unemployment and Credit Risk", Revise and Resubmit "Predictable Returns over the Credit Cycle"

李学楠 Erica X.N. Li

Academic Background

- **BS** in Physics and BA in Economics from Peking University 1998
- **PhD** in Physics from the University of Massachusetts, Amherst; also a **PhD** in Finance from university of Rochester

Current Appointments

Assistant Professor in Finance, University of Michigan, Stephen M.Ross School of Business, 2007-2011 Visiting Assistant Professor in Finance, Cheung Kong Graduate School

of Business,2011-present

Research interest

Capital structure, asset pricing, macroeconomics

1. Do Underwriters Compete in IPO Pricing? 2018, Management Science 64 (2), 925-954

2. **Anomalies**,2009, with Dmitry Livdan and Lu Zhang, Review of Financial Studies, lead article,22(11),4301-4334.

3. Nominal Rigidities, Asset Returns and Monetary Policy, 2014, with Francisco Palomino, Journal of Monetary Economics, 66, 210–225.

preliminary

4.true beta& true market beta

5. full sample & post-Compustat sample & (pre-)

6. true beta $(E_t[R_{it+1}] - r_{ft})/\phi_{Mt}$ & true market beta $(E_t[R_{it+1}] - r_{ft})/(E_t[R_{Mt+1}] - r_{ft}))$

preliminary

7. Nonlinearity in the pricing kernel

If the CAPM holds exactly, the pricing kernel can be expressed as a linear function of the market excess return $M_{t+1} = l_0 + l_1 R_{Mt+1}$ The disaster risk induces strong nonlinearity in the pricing kernel, making the CAPM a poor proxy of the pricing kernel.

Abstract

help explain

the empirical failure of the (consumption) CAPM

2

Abstract

3

even though the true beta-return relation is strongly positive

the estimated beta-return relation is flat due to beta measurement errors

consistent with the beta "anomaly"

Finally, the consumption CAPM fails in simulations, even though a nonlinear model with the true pricing kernel holds exactly by construction

Contents

- 1. introduction
- 2. Stylized facts
- 3. An equilibrium model
- 4. Quantitative results
- 5. Conclusion

(1) background

the failure of CAPM in empirical Fama and French (1992) : In the US sample from July 1963 to June 2017, the high-minus-low book-to-market decile return is, on average, 0.47% per month (t=2.53). However, its market beta is only 0.07 (t=0.86), giving rise to an economically large alpha of 0.43% (t=1.89) in the capital asset pricing model (CAPM)

the success of CAPM (

Ang and Chen (2007): The CAPM performs better in explaining the value premium in the long sample **from July 1926 onward** that contains the Great Depression. The high-minus-low return is, on average, 0.48% (t=2.5), but its **CAPM alpha is only 0.19%** (t=0.99), with a large market beta of 0.45 (t=3.87).

(2) what to study

П

Oh

- We calibrate the model to disaster moments estimated from a historical crosscountry panel dataset
- We quantify the model's properties **on simulated samples** in which disasters are not realized as well as on samples in which disasters are realized

 introduction
 Stylized-facts
 Model
 Simulatio
 Conclusi
 Image: Conclusion of the conclusi

原因:

Intuitively, with asymmetric adjustment costs(价值溢价怎么产生)

More important, the disaster risk induces strong nonlinearity in the pricing kernel, making the linear CAPM a poor empirical proxy for the pricing kernel. (有灾难样本CAPM 表现好,灾难可以帮助解释价值溢价)

introduction Stylized-facts Model Simulatio Conclusi

的存在时候大学 SHANXIUNIVERSITY OF FINANCE AND ECONOMICS

(2) three key quantitative results

Second, our equilibrium model is also consistent with the beta "anomaly":

In simulated samples, with and without disasters sorting on the preranking market beta yields an average return spread that is economically small and statistically insignificant
 postranking beta spread that is economically

Oh

large and significantly positive, and a CAPM **alpha** spread that is often **significantly negative**.

the true beta often mean reverts, giving rise to a negative correlation with the rolling beta,
 However, while the realization of disasters makes the rolling beta more aligned with the true beta, the measurement errors remain large, and the beta anomaly persists even in the disaster samples.

The crux is that the estimated market beta is a poor proxy for the true beta.

introduction Stylized-facts Model Simulatio Conclusi

(3) three key quantitative results

Third, our equilibrium model, in which a nonlinear consumption CAPM holds by construction, also largely succeeds in replicating the empirical failure of the standard, linearized consumption CAPM:

In simulated samples, with and without disasters the **consumption betas** from regressing excess returns on the aggregate consumption growth in the first-stage regressions are mostly **insignificant**

Oh

In the second-stage cross-sectional regressions, the **intercepts** are **significantly** positive

Intuitively, the aggregate consumption growth is a poor proxy for the pricing kernel based on recursive utility.

The true pricing kernel performs substantially better in the linearized consumption CAPM tests, especially in the disaster samples. However, without the extreme observations from disasters, even the true price kernel encounters difficulty in the linear tests.

(4) contribution

- contributes to investment-based asset pricing theories
 - We turbocharge the asymmetry mechanism via disasters
 - We retain **the single-factor structure** but fail the CAPM via **disaster-induced nonlinearity in the pricing kernel**.
- Methodologically, most prior models are partial equilibrium in nature, with exogenous pricing kernels
 - We first construct a general equilibrium model with heterogenous firms in which consumption and the pricing kernel are endogenously determined.
- contribute to the disaster literature, which uses disasters to explain the equity premium puzzle
 - Integrating the disaster literature with investment-based asset pricing, we show how disasters help resolve a long-standing puzzle in the latter literature in explaining the failure of the (consumption) CAPM

introduction Stylized-facts Model Simulatio Conclusi

相垠ロハ分组

(1) The failure of the CAPM

										小化小白 DIV	W刀组
	L	2	3	4	5	6	7	8	9	Н	H-L
			Pane	el A: The post-	-Compustat sa	ample ($F_{GRS} =$	2.04 $p_{GRS} =$	0.03)			
$E[R^e]$	0.44	0.54	0.59	0.54	0.55	0.66	0.62	0.70	0.86	0.91	0.47
t_{R^e}	2.22	3.00	3.26	2.98	3.14	3.88	3.49	3.88	4.41	3.80	2.53
α	-0.11	0.02	0.07	0.03	0.07	0.20	0.15	0.23	0.35	0.32	0.43
t_{lpha}	-1.23	0.44	1.17	0.39	0.80	2.21	1.23	2.00	3.03	2.04	1.89
β	1.06	1.00	0.99	0.98	0.91	0.88	0.92	0.91	0.98	1.13	0.07
t_{β}	41.66	42.06	40.88	32.43	28.19	23.30	19.35	18.26	22.65	17.47	0.86
\dot{R}^2	0.86	0.91	0.91	0.87	0.83	0.80	0.78	0.76	0.77	0.68	0.00
				Panel B: The	e full sample	$(F_{\rm GRS}=2.05,$	$p_{\rm GRS} = 0.03$				
$E[R^e]$	0.59	0.69	0.69	0.66	0.72	0.79	0.72	0.91	1.06	1.07	0.48
t_{R^e}	3.40	4.28	4.23	3.71	4.19	4.35	3.73	4.49	4.55	3.84	2.50
α	-0.08	0.07	0.05	-0.02	0.07	0.11	0.00	0.16	0.22	0.11	0.19
t_{lpha}	-1.21	1.46	1.02	-0.38	0.92	1.32	0.02	1.82	1.94	0.74	0.99
β	1.01	0.95	0.97	1.05	1.00	1.03	1.10	1.14	1.28	1.46	0.45
t_{β}	52.73	27.62	59.98	22.11	27.29	14.85	17.73	16.11	14.32	14.49	3.87
\dot{R}^2	0.90	0.91	0.93	0.90	0.89	0.85	0.84	0.83	0.80	0.72	0.14
			Pan	el C: The pre-	Compustat sa	mple ($F_{GRS} =$	1.48, $p_{GRS} = 0$	0.14)			
$E[R^e]$	0.80	0.90	0.84	0.85	0.98	0.99	0.87	1.22	1.35	1.31	0.51
t_{R^e}	2.57	3.06	2.77	2.40	2.89	2.65	2.17	2.88	2.72	2.22	1.30
α	-0.04	0.11	0.02	-0.10	0.07	0.01	-0.18	0.11	0.08	-0.14	-0.10
t_{lpha}	-0.44	1.60	0.25	-1.12	0.71	0.07	-1.27	0.89	0.38	-0.50	-0.31
β	0.98	0.91	0.96	1.10	1.06	1.14	1.23	1.30	1.48	1.68	0.71
t_{β}	46.35	19.18	47.86	16.67	24.69	12.60	17.77	16.90	15.07	14.50	5.31
\dot{R}^2	0.94	0.92	0.94	0.92	0.93	0.89	0.89	0.89	0.84	0.77	0.31

h

on

What is the differences across the pre- and post-1963 samples?

(1) The failure of the CAPM

Returns are in monthly percent

	MKT	H-L		MKT	H-L
November 1928	11.81	-0.29	August 1933	12.05	3.76
October 1929	-20.12	7.60	January 1934	12.60	35.20
June 1930	-16.27	-3.60	September 1937	-13.61	-10.56
May 1931	-13.24	-3.37	March 1938	-23.82	-20.35
June 1931	13.90	14.57	April 1938	14.51	9.16
September 1931	-29.13	-4.03	June 1938	23.87	11.15
December 1931	-13.53	-16.22	September 1939	16.88	57.22
April 1932	-17.96	-2.65	May 1940	-21.95	-15.59
May 1932	-20.51	4.09	October 1974	16.10	-13.57
July 1932	33.84	44.54	January 1975	13.66	19.72
August 1932	37.06	67.95	January 1976	12.16	15.03
October 1932	-13.17	-12.80	March 1980	-12.90	-8.78
February 1933	-15.24	-5.70	January 1987	12.47	-2.83
April 1933	38.85	20.04	October 1987	-23.24	-1.20
May 1933	21.43	44.85	August 1998	-16.08	-3.27
June 1933	13.11	10.40	October 2008	-17.23	-9.64

h

Oh

(1) 23 of 32 are from the Great Depression

(2) Their correlation is 0.72

introduction Stylized-facts Model Simulatio Conclusi

(1) The failure of the CAPM

Oh

(2) The beta anomaly

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		で 依据preranking market beta 分组											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		L	2	3	4	5	6	7	8	9	Н	H-L	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					Panel A: Th	ne post-Comp	oustat sample	$(F_{\rm GRS}=1.39,$	$p_{\rm GRS} = 0.18)$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$E[R^e]$	0.52	0.52	0.56	0.58	0.69	0.55	0.67	0.55	0.57	0.55	0.03	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t_{R^e}	3.85	3.64	3.45	3.38	3.75	2.86	3.14	2.42	2.23	1.72	0.11	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	α	0.22	0.17	0.13	0.12	0.18	0.01	0.07	-0.08	-0.13	-0.29	-0.52	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t_{α}	2.11	1.76	1.69	1.42	2.17	0.18	0.85	-0.82	-1.10	-1.49	-1.94	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	β	0.57	0.68	0.82	0.87	0.98	1.03	1.15	1.22	1.34	1.62	1.06	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t_{β}	12.39	17.21	20.57	20.68	28.13	31.21	50.25	41.76	35.41	30.92	11.81	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	\dot{R}^2	0.53	0.68	0.77	0.79	0.86	0.86	0.88	0.86	0.84	0.77	0.43	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					Pane	l B: The full	sample (F _{GRS}	$= 2.41, p_{GRS} =$	= 0.01)				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$E[R^e]$	0.58	0.63	0.65	0.74	0.83	0.72	0.79	0.73	0.77	0.75	0.16	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t_{R^e}	5.03	4.66	4.41	4.46	4.54	3.71	3.74	3.11	2.94	2.44	0.66	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	α	0.22	0.16	0.13	0.14	0.17	0.01	0.02	-0.13	-0.17	-0.33	-0.55	
$ \beta = 0.57 0.73 0.83 0.94 1.05 1.11 1.22 1.36 1.48 1.70 1.13 t_{\beta} = 22.86 30.50 36.61 40.31 41.41 39.61 48.26 36.17 26.65 40.93 18.82 R^2 0.66 0.81 0.85 0.88 0.90 0.90 0.91 0.90 0.88 0.84 0.57 0$	t_{lpha}	2.87	2.22	2.21	2.31	2.49	0.20	0.27	-1.51	-1.68	-2.29	-2.81	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	β	0.57	0.73	0.83	0.94	1.05	1.11	1.22	1.36	1.48	1.70	1.13	
\hat{R}^2 0.66 0.81 0.85 0.88 0.90 0.90 0.91 0.90 0.88 0.84 0.57	t_{β}	22.86	30.50	36.61	40.31	41.41	39.61	48.26	36.17	26.65	40.93	18.82	
	R^2	0.66	0.81	0.85	0.88	0.90	0.90	0.91	0.90	0.88	0.84	0.57	

h

on

(1) contradicting the CAPM, the relation between the market beta and the average return in the data is largely flat

2 CAPM alpha for the high-minus-low market beta decile is economically large,

-0.52%, albeit marginally significant(t = -1.94)

h

(3) The failure of the consumption CAPM

	L	2	3	4	Н	L	2	3	4	Н
			Panel	A: Annual o	consumption	growth, 1930-	-2016, 87	years		
			$E[R^e]$					t_{R^e}		
Small	6.04	10.65	13.73	16.82	18.56	1.48	2.44	3.85	4.44	4.57
2	9.02	12.32	13.33	14.90	16.03	2.51	4.00	4.25	4.51	4.67
3	9.27	11.83	11.88	13.73	14.72	3.09	4.35	4.38	4.69	4.34
4	8.82	9.68	11.49	12.83	13.16	3.48	3.76	4.16	4.45	3.69
Big	7.46	7.38	8.90	8.36	11.58	3.44	3.62	3.92	3.12	3.72
			β^{c}					t_{β^c}		
Small	2.80	0.66	1.63	1.86	1.58	1.52	0.19	0.70	0.69	0.57
2	1.25	1.72	0.88	1.25	1.68	0.54	0.83	0.41	0.53	0.78
3	0.29	1.11	1.77	2.12	2.15	0.14	0.64	0.99	1.15	0.94
4	0.38	0.37	1.32	1.36	0.47	0.25	0.20	0.70	0.66	0.18
Big	1.05	0.59	1.79	2.26	-0.88	0.93	0.47	1.18	1.19	-0.28
		Pa	anel B: Qua	rterly cons	umption gro	wth, 1947:Q2-	2017:Q2, 2	281 quarte	ers	
			$E[R^e]$	-				$t_{R'}$		
Small	1.25	2.58	2.57	3.23	3.65	1.39	3.36	3.78	4.93	5.06
2	1.74	2.58	2.86	3.01	3.38	2.21	3.90	4.78	5.02	5.00
3	1.96	2.61	2.54	2.99	3.26	2.79	4.40	4.63	5.26	5.08
4	2.18	2.18	2.60	2.74	2.93	3.41	3.97	4.83	5.06	4.45
Big	1.90	1.90	2.18	1.98	2.47	3.74	4.10	4.99	3.91	4.26
			β^{c}					t_{β^c}		
Small	4.22	4.73	3.43	3.63	3.94	2.46	3.23	2.54	2.84	2.63
2	3.01	2.89	2.91	3.07	3.60	2.08	2.34	2.65	2.62	2.66
3	2.85	2.59	2.57	2.63	2.99	2.02	2.18	2.43	2.22	2.55
4	2.47	2.16	2.54	2.39	3.77	1.86	1.92	1.94	2.04	2.59
Big	2.62	1.94	1.97	2.60	2.80	2.54	1.93	2.09	1.99	2.44
			Panel C: F	ourth-quar	ter consump	tion growth, 1	948-2016	, 69 years		
			$E[R^e]$		_			t_{R^e}		
Small	5.38	11.47	11.21	14.25	16.17	1.30	3.14	3.61	4.69	4.77
2	6.95	10.71	12.30	13.18	14.48	2.08	3.93	4.53	4.86	4.82
3	7.72	11.03	10.74	13.14	14.25	2.74	4.42	4.57	4.78	4.85
4	8.77	9.00	11.21	12.00	12.73	3.35	3.97	4.45	4.74	4.25
Big	7.95	7.74	9.41	8.54	10.81	3.47	3.92	4.59	3.58	3.94
			β^{c}					$t_{\beta^{C}}$		
Small	3.83	5.50	4.35	5.05	6.09	1.43	2.32	2.01	2.73	2.69
2	3.07	3.17	4.48	5.08	6.34	1.36	1.60	2.58	3.07	3.50
3	2.64	3.89	4.03	4.50	5.68	1.20	2.13	2.45	2.26	3.06
4	2.22	3.02	4.23	5.03	5.95	1.06	1.60	2.02	2.78	2.77
Big	3.04	2.86	3.34	5.19	5.12	1.67	1.84	2.11	2.89	2.66

(1) two-stage Fama and MacBeth (1973)

$$R_{it}^e = a_i + \beta_i^C g_{Ct} + e_{it},$$

$$R_{it}^e = \phi_0 + \phi_1 \beta_i^C + \alpha_i$$

②size: small 12.52% big 4.12%

③ βc 1.58 vs 2.8

on

(3) The failure of the consumption CAPM

	Panel A: 1930-	Annual, -2016	Panel B: 1947:Q2-	Quarterly, -2017:Q2	Panel C: Fourth-quarter, 1948–2016		
	ϕ_0	ϕ_1	ϕ_0	ϕ_1	ϕ_0	ϕ_1	
Estimates	10.97	0.58	1.88	0.22	3.30	1.75	
t _{FM}	4.14	1.16	3.73	1.12	1.23	3.44	
ts	3.99	1.13	3.42	1.03	0.77	2.23	
χ^2		152.19		100.00		55.85	
p_{χ^2}		0.00		0.00		0.00	
$R^{\hat{2}}$		0.02		0.07		0.60	

on

Panel B: Quarterly, 1947:Q2–2017Q2

Panel C: Fourth-quarter, 1948–2016

Average predicted excess returns versus average realized excess returns

(1) Preferences

$$U_{t} = \left[(1-\varrho)C_{t}^{1-\frac{1}{\psi}} + \varrho\left(E_{t}\left[U_{t+1}^{1-\gamma}\right]\right)^{\frac{1-1/\psi}{1-\gamma}}\right]^{\frac{1}{1-1/\psi}}, \quad \text{(3)}$$

$$M_{t+1} = \varrho\left(\frac{C_{t+1}}{C_{t}}\right)^{-\frac{1}{\psi}} \left(\frac{U_{t+1}^{1-\gamma}}{E_{t}\left[U_{t+1}^{1-\gamma}\right]}\right)^{\frac{1/\psi-\gamma}{1-\gamma}}. \quad (4)$$

(2) Technology

$$Y_{it} = (X_t Z_{it})^{1-\xi} K_{it}^{\xi},$$
(5)

$$\Pi_{it} = Y_{it} - \int K_{it},$$
(6)

$$g_{xt} = \overline{g} + g_t,$$

$$\log \text{aggregate productivity growth} \\ g_{xt} \equiv \log(X_t/X_{t-1}),$$
(7)

$$g_{t+1} = \rho_g g_t + \sigma_g \epsilon_{t+1}^g, \tag{8}$$

$$z_{it+1} = (1 - \rho_z)\overline{z} + \rho_z z_{it} + \sigma_z \epsilon_{it+1}^z, \qquad (9)$$

introduction Stylized-facts Model Simulatio Conclusi

introduction Stylized-facts Model Simulatio Conclusi ⑥ ゆそ以彼大等 (4) Adjustment costs

$$K_{it+1} = I_{it} + (1 - \delta)K_{it}, \qquad (14)$$

asymmetric adjustment costs

$$\Phi_{it} \equiv \Phi(I_{it}, K_{it}) = \begin{cases} a^{+}K_{it} + \frac{c^{+}}{2} \left(\frac{I_{it}}{K_{it}}\right)^{2} K_{it} & \text{for } I_{it} > 0\\ 0 & \text{for } I_{it} = 0 \\ a^{-}K_{it} + \frac{c^{-}}{2} \left(\frac{I_{it}}{K_{it}}\right)^{2} K_{it} & \text{for } I_{it} < 0 \end{cases}$$
(15)

$$\mu_{t+1} = \Upsilon(\mu_t, X_t, X_{t+1}).$$
(16)

$$V_{it} \equiv V(K_{it}, Z_{it}; X_t, \mu_t) \qquad D_{it} \equiv \Pi_{it} - I_{it} - \Phi(I_{it}, K_{it})$$
$$= \max_{\{\chi_{it}\}} \left(\max_{\{I_{it}\}} D_{it} + E_t [M_{t+1}V(K_{it+1}, Z_{it+1}; X_{t+1}, \mu_{t+1})], sK_{it} \right), \qquad (17)$$
$$S > 0 \text{ is the liquidation value parameter}$$

when $V_{it} \ge sK_{it}$, firm *i* stays in the economy

$$V_{it} = D_{it} + E_t [M_{t+1}V_{it+1}] \qquad \qquad R_{it+1} \equiv V_{it+1}/(V_{it} - D_{it})$$

when $V_{it} < sK_{it}$, firm *i* exits from the economy

The current shareholders receive SK_{it}

New shareholders take over the remainder of the firm's capital $(1 - s - \kappa)K_{it}$

Prior theoretical models, all of which have no disasters, have largely ignored the exit decision.

(6) Competitive equilibrium

The aggregate behavior of the economy isconsistent with the optimal behavior of all firms in the economy

$Y_t = \int Y_{it} \mu_t (dK_{it}, dZ_{it}),$	(19)	$\mu_{t+1}(\Theta, X_{t+1}) = T(\Theta, (K_{it}, Z_{it}), X_t) \mu_t(K_{it}, Z_{it}, X_t),$ (22)
$I_t = \int I_{it} \mu_t(dK_{it}, dZ_{it}),$	(20)	in which
$K_t = \int K_{it} \mu_t (dK_{it}, dZ_{it}),$	(21)	$T(\Theta, (K_{it}, Z_{it}), X_t) = \iint 1_{\{(I_{it}+(1-\delta)K_{it}, Z_{it+1})\in\Theta\}} Q_Z(dZ_{it+1} Z_{it}) Q_X(dX_{t+1} X_t),$
$\Phi_t = \int \Phi_{it} \mu_t(dK_{it}, dZ_{it}).$	(22)	(24)

$$C_t = Y_t - I_t \Rightarrow C_t = D_t + fK_t + \Phi_t.$$
(25)

introduction Stylized-facts Model Simulatio Conclusi

(7) Solving for the competitive equilibrium

 $\widehat{V}_{it} \equiv V_{it}/X_{t-1}$, $\widehat{K}_{it} \equiv K_{it}/X_{t-1}$, $\widehat{I}_{it} \equiv I_{it}/X_{t-1}$, $\widehat{\Phi}_{it} \equiv \Phi_{it}/X_{t-1}$, $\widehat{C}_t \equiv C_t/X_{t-1}$, and $\widehat{D}_{it} \equiv D_{it}/X_{t-1}$, and then rewrite the key equations as follows:

n

Oh

introduction Stylized-facts Model Simulatio Conclusi

(7) Solving for the competitive equilibrium

• The log utility-to-consumption ratio, $\hat{u}_t \equiv \log(\hat{U}_t)$:

$$\exp(\widehat{u}_{t}) = \left[(1-\varrho) + \varrho(E_{t}[\exp[(1-\gamma) + (\widehat{u}_{t+1} + \widehat{g}_{ct+1} + g_{xt})]])^{\frac{1-1/\psi}{1-\gamma}} \right]^{\frac{1}{1-1/\psi}}, \quad (26)$$

n

on

in which $\widehat{g}_{ct+1} \equiv \log(\widehat{C}_{t+1}/\widehat{C}_t)$ is the log growth rate of detrended consumption.

• The pricing kernel:

$$M_{t+1} = \varrho \exp\left[-\frac{1}{\psi}(\widehat{g}_{ct+1} + g_{xt})\right] \\ \times \left[\frac{\exp\left[(1-\gamma)(\widehat{u}_{t+1} + \widehat{g}_{ct+1})\right]}{E_t[\exp\left[(1-\gamma)(\widehat{u}_{t+1} + \widehat{g}_{ct+1})\right]]}\right]^{\frac{1/\psi-\gamma}{1-\gamma}}.$$

$$(27)$$
Profits: $\widehat{\Pi}_{it} = \exp\left[(1-\xi)g_{xt}\right]Z_{it}^{1-\xi}\widehat{K}_{it}^{\xi} - f\widehat{K}_{it}.$

(7) Solving for the competitive equilibrium

introduction Stylized-facts Model Simulatio Conclusi

(7) Solving for the competitive equilibrium

• Capital accumulation: $\widehat{K}_{it+1} \exp(g_{xt}) = (1-\delta)\widehat{K}_{it} + \widehat{I}_{it}$.

n

Oh

The adjustment costs function:

$$\widehat{\Phi}_{it} = \begin{cases} a^{+}\widehat{K}_{it} + \frac{c^{+}}{2} \left(\frac{\widehat{I}_{it}}{\widehat{K}_{it}}\right)^{2} \widehat{K}_{it} & \text{for} \quad \widehat{I}_{it} > 0\\ 0 & \text{for} \quad \widehat{I}_{it} = 0. \\ a^{-}\widehat{K}_{it} + \frac{c^{-}}{2} \left(\frac{\widehat{I}_{it}}{\widehat{K}_{it}}\right)^{2} \widehat{K}_{it} & \text{for} \quad \widehat{I}_{it} < 0 \end{cases}$$
(28)

- The cross-sectional distribution of \widehat{K}_{it} and Z_{it} , $\widehat{\mu}_t$ and its equilibrium law of motion, $\widehat{\Upsilon}_t$.
- The value function, $\widehat{V}_{it} \equiv \widehat{V}(\widehat{K}_{it}, Z_{it}, g_t, \widehat{\mu}_t)$:

$$\widehat{V}_{it} = \max_{\{\chi_{it}\}} [\max_{\{\widehat{I}_{it}\}} \ \widehat{D}_{it} + E_t[M_{t+1}\widehat{V}(\widehat{K}_{it+1}, Z_{it+1}, g_{t+1}, \widehat{\mu}_{t+1})] \\ \times \exp(g_{xt}), \ s\widehat{K}_{it}].$$
(29)

• The stock return for an incumbent firm: $R_{it+1} \equiv \widehat{V}_{it+1} \exp(g_{xt})/(\widehat{V}_{it} - \widehat{D}_{it})$.

approximate aggregation

(1) Calibration and basic moments

The impulse response of consumption to a disaster shock in the model, which are based on more than 28,000 disaster episodes.

		Sam	ples with d	isasters, ann	ual			Samples without disasters, quarterly					
	Data	Mean	2.5	50	97.5	р		Data	Mean	2.5	50	97.5	р
					Pan	el A: Out	out growth						
Vol	4.79	4.41	1.37	4.26	8.50	0.41		0.94	0.50	0.44	0.49	0.65	0.00
Skew	-0.29	-1.89	-4.32	-2.09	2.07	0.15		-0.18	0.02	-0.32	-0.02	1.02	0.88
Kurt	6.14	11.43	2.95	9.54	27.52	0.78		4.51	3.05	2.41	2.90	5.11	0.04
Ar ₁	0.54	0.69	0.27	0.73	0.93	0.80	Ar ₁	0.37	0.43	0.30	0.42	0.63	0.82
Ar ₂	0.19	0.38	-0.15	0.40	0.82	0.74	Ar_4	-0.07	0.11	-0.06	0.09	0.35	0.99
Ar ₃	-0.14	0.23	-0.22	0.21	0.72	0.92	Ar ₈	-0.02	0.07	-0.09	0.06	0.26	0.82
Ar ₄	-0.34	0.14	-0.26	0.12	0.62	0.99	Ar_{12}	-0.12	0.05	-0.10	0.04	0.24	0.99
Ar ₅	-0.19	0.09	-0.25	0.07	0.53	0.94	Ar_{20}	0.05	0.02	-0.13	0.02	0.19	0.35
					Panel I	B: Consum	nption grow	/th					
Vol	2.13	4.28	1.30	4.13	8.28	0.87		0.50	0.46	0.40	0.45	0.60	0.09
Skew	-1.48	-1.93	-4.42	-2.14	2.13	0.32		-0.41	0.02	-0.31	-0.03	1.14	0.99
Kurt	8.09	11.66	2.98	9.63	28.82	0.63		4.17	3.10	2.44	2.93	5.83	0.04
Ar ₁	0.48	0.69	0.24	0.74	0.93	0.85	Ar ₁	0.31	0.44	0.31	0.44	0.66	0.97
Ar_2	0.18	0.39	-0.15	0.42	0.83	0.75	Ar_4	0.10	0.13	-0.05	0.12	0.39	0.61
Ar ₃	-0.05	0.24	-0.22	0.23	0.72	0.86	Ar ₈	-0.02	0.08	-0.08	0.08	0.30	0.86
Ar_4	-0.19	0.16	-0.24	0.13	0.63	0.95	Ar_{12}	0.08	0.06	-0.10	0.05	0.28	0.35
Ar ₅	0.00	0.10	-0.24	0.08	0.55	0.70	Ar_{20}	-0.04	0.03	-0.13	0.03	0.21	0.83
					Panel	C: Invest	ment growt	:h					
Vol	13.53	19.56	3.10	12.28	71.84	0.45	-	2.40	1.09	0.98	1.08	1.33	0.00
Skew	-1.33	-0.17	0.02	-1.56	2.69	0.68		-0.53	-0.20	-0.58	-0.20	0.25	0.96
Kurt	7.07	27.45	6.68	19.50	100.98	0.96		4.73	3.70	2.85	3.41	5.26	0.03
Ar ₁	0.41	0.18	0.00	0.23	0.59	0.17	Ar ₁	0.46	0.24	0.11	0.24	0.38	0.01
Ar_2	-0.15	-0.06	0.00	0.00	-0.44	0.71	Ar_4	-0.03	-0.00	-0.12	-0.01	0.14	0.63
Ar ₃	-0.33	-0.07	0.00	0.00	0.38	0.96	Ar ₈	-0.18	-0.01	-0.12	-0.01	0.11	1.00
Ar ₄	-0.17	-0.06	-0.00	0.00	-0.07	0.84	Ar_{12}	-0.09	-0.01	-0.13	-0.01	0.11	0.90
Ar ₅	-0.05	-0.05	-0.00	-0.05	-0.06	0.57	Ar_{20}	0.03	-0.00	-0.12	0.00	0.11	0.29

More important, introducing an extra aggregate state will most likely strengthen the model's ability to explain the failure of the CAPM, which is our main focus.

(2) Key properties of the competitive equilibrium

Optimal policy functions

(2) Key properties of the competitive equilibrium

Risk and risk premiums

(2) Key properties of the competitive equilibrium

Value versus growth

(3)Expla	ining th	e failure	of the C	CAPM						
	L	2	3	4	5	6	7	8	9	Н	H-L
			Panel A: S	amples with	disasters (FGR	s = 12.67, [1.3]	35, 40.28]; p _G	RS = 0.01, [0.0]	0, 0.20])		
$E[R^e]$	0.75	0.74	0.74	0.74	0.75	0.77	0.81	0.86	0.96	1.20	0.46
t _{Re}	11.17	10.95	10.73	10.50	10.29	10.02	9.83	9.59	9.29	8.94	4.92
α	0.08	0.06	0.04	0.03	0.01	-0.02	-0.05	-0.09	-0.15	-0.27	-0.35
2.5	-0.03	-0.03	-0.04	-0.05	-0.08	-0.12	-0.19	-0.29	-0.42	-0.70	-0.86
97.5	0.21	0.16	0.13	0.10	0.08	0.06	0.05	0.04	0.02	0.00	0.00
tα	1.75	1.55	1.22	0.74	0.18	-0.54	-1.10	-1.60	-2.05	-2.32	-2.44
2.5	-0.84	-0.91	-1.03	-1.53	-2.11	-3.01	-3.63	-4.19	-4.16	-4.33	-4.53
97.5	4.43	3.99	3.56	2.92	2.29	1.90	1.39	1.07	0.57	0.05	0.05
β	0.83	0.85	0.87	0.89	0.93	0.99	1.07	1.19	1.40	1.84	1.01
2.5	0.66	0.73	0.79	0.84	0.87	0.90	0.94	1.00	1.13	1.47	0.52
97.5	0.98	0.96	0.94	0.96	1.04	1.18	1.33	1.57	1.85	2.32	1.61
t_{β}	35.57	42.36	51.84	69.25	74.28	65.01	53.50	38.76	25.28	18.49	7.85
2.5	8.64	12.52	17.67	22.78	18.11	12.68	10.11	8.22	7.10	7.45	3.47
97.5	132.89	133.16	145.36	174.58	184.14	169.89	166.37	139.47	77.09	42.45	17.28
R^2	0.77	0.78	0.79	0.79	0.80	0.81	0.83	0.85	0.86	0.87	0.57
			Panel B: S	amples witho	ut disasters ($F_{\rm GRS} = 4.76, [2]$	2.33, 8.15]; po	$_{\rm RS} = 0.00, [0.0]$	00, 0.01])		
$E[R^e]$	0.77	0.76	0.75	0.74	0.75	0.76	0.78	0.82	0.91	1.16	0.40
t_{R^e}	23.37	23.02	22.48	22.05	22.08	21.79	22.75	23.93	25.51	28.69	7.72
α	0.10	0.04	-0.02	-0.07	-0.10	-0.13	-0.07	0.02	0.13	0.35	0.25
2.5	-0.04	-0.09	-0.16	-0.20	-0.24	-0.26	-0.20	-0.12	-0.00	0.17	0.02
97.5	0.25	0.18	0.12	0.08	0.05	0.00	0.06	0.16	0.27	0.51	0.49
t_{α}	1.46	0.57	-0.22	-0.99	-1.37	-1.80	-0.93	0.32	1.83	4.25	2.26
2.5	-0.55	-1.21	-2.21	-2.82	-3.24	-3.62	-2.78	-1.63	-0.01	1.77	0.18
97.5	3.61	2.68	1.68	1.16	0.88	0.02	0.88	2.46	3.87	6.61	4.37
β	0.83	0.90	0.96	1.02	1.06	1.10	1.06	1.00	0.97	1.01	0.18
2.5	0.67	0.74	0.81	0.86	0.89	0.97	0.90	0.84	0.80	0.80	-0.09
97.5	0.98	1.05	1.11	1.18	1.23	1.24	1.22	1.15	1.13	1.20	0.47
t _β	11.04	11.91	12.60	13.23	13.69	14.06	13.58	12.94	11.89	10.64	1.44
2.5	8.56	9.05	10.40	10.63	11.07	11.51	10.92	10.29	9.55	7.66	-0.70
97.5	14.75	16.68	15.84	16.53	16.60	17.57	17.53	17.10	15.10	13.49	3.59
R^2	0.10	0.12	0.13	0.14	0.15	0.16	0.15	0.13	0.12	0.10	0.00

②Nonlinearity in the pricing kernel

The linear CAPM fits poorly the observations from the disaster state, **with high** realizations of the pricing kernel, and the observations from the recovery state, **with low** realizations of the pricing kernel.

CAPM is an even worse proxy for the pricing kernel in the no-disaster samples. The regression slope is **only –0.03**. As such, the CAPM fails badly in the no-disaster samples.

(4	l) Expla	ining th	e beta a	nomaly				居preranking	oreranking market beta分组			
	L	2	3	4	5	6	7	8	9	Н	H-L	
			Panel A: S	Samples with	disasters (F _{GF}	s = 12.55, [0.9]	90, 43.35]; p _G	$R_{RS} = 0.04, [0.00]$	00, 0.54])			
$E[R^e]$	0 <u>.77</u>	0.79	0.81	0.83	0.82	0.85	0.85	0.85	0.85	0.83	0.06	
t_{R^e}	10.48	10.68	10.54	10.26	9.78	9.83	9.57	9.27	8.69	8.31	0.85	
α	0.03	0.05	0.04	0.02	-0.02	-0.03	-0.05	-0.09	-0.16	-0.21	-0.24	
2.5	-0.12	-0.04	-0.04	-0.06	-0.13	-0.15	-0.22	-0.29	-0.47	-0.55	-0.67	
97.5	0.16	0.15	0.12	0.11	0.09	0.09	0.09	0.08	0.07	0.04	0.11	
t_{α}	0.70	1.36	1.17	0.46	-0.49	-0.53	-0.91	-1.23	-1.64	-2.15	-1.74	
2.5	-2.92	-1.17	-1.09	-1.75	-3.10	-3.33	-3.80	-4.06	-4.39	-4.78	-4.52	
97.5	3.66	3.77	3.26	2.84	2.29	2.33	2.33	2.17	1.84	1.05	1.86	
β	0.92	0.92	0.96	1.01	1.05	1.09	1.12	1.16	1.25	1.28	0.37	
2.5	0.78	0.84	0.90	0.93	0.94	0.96	0.95	0.95	0.94	0.92	-0.09	
97.5	1.12	1.03	1.04	1.08	1.17	1.24	1.31	1.41	1.64	1.72	0.93	
t _β	35.79	48.38	62.91	74.19	61.90	48.67	41.79	36.71	28.14	20.98	2.57	
2.5	9.71	15.76	21.14	21.10	17.95	13.39	9.96	7.94	5.54	5.57	-2.85	
97.5	134.73	167.31	168.44	192.12	192.23	156.44	157.07	154.49	140.85	79.15	7.00	
R^2	0.81	0.81	0.82	0.82	0.82	0.84	0.84	0.84	0.85	0.85	0.21	
			Panel B: S	amples witho	ut disasters ($F_{\rm CRS} = 4.50$	2.10, 7.32]; p	$c_{RS} = 0.00, [0.0]$	<u>00. 0.02])</u>			
$E[R^e]$	0.78	0.81	0.82	0.83	0.81	0.84	0.83	0.81	0.79	0.76	-0.02	
t_{R^e}	23.48	23.66	23.62	23.53	21.72	23.38	23.13	22.88	22.50	21.87	-0.48	
α	0.05	0.07	0.11	0.10	0.01	0.10	0.10	0.04	0.05	2 75	-0.21	
2.5										7	-0.39	
97.5										2	-0.02	
t_{α}	The	crux is	that the	e rolling	g marke	et beta	contain	is a grea	at deal	of 7	-1.96	
2.5								0.0		2	-3.91	
97.5	mea	asuremo	ent erro	ors and	is, cons	sequent	tly, a pc	or prox	(v for th		-0.15	
β					,	•	<i>//</i> 1	•	'	6	0.23	
2.5	true	e marke	t beta.							0	-0.00	
97.5										11	0.46	
t _β										7	1.98	
2.5										5	-0.01	
97.5	17.00	16.61	14.24	15.16	15.76	13.54	14.07	14.84	16.66	21.02	4.19	
R^2	0.16	0.12	0.11	0.10	0.12	0.10	0.11	0.13	0.15	0.22	0.00	

(4) Explaining the beta anomaly

In untabulated results, sorting on the true market beta yields large average return spreads across extreme deciles in the model, with and without disasters.

 ら か そ な が 住 大 子 Shanxi University of Finance and economics

(4) Explaining the beta anomaly

To illustrate the measurement errors of rolling market betas as the proxy for the true market betas:

the correlation between the true and rolling market betas is weakly positive, 2.84%, across the preranking market beta deciles in the disaster samples, but weakly negative, –5.43%, in the no-disaster samples.

the true market beta accurately and immediately reflects changes in aggregate and firm-specific conditions. Within a given rolling window, the true market beta often even mean reverts, giving rise to opposite rankings in rolling betas. introduction Stylized-facts Model Simulation Conclusion

	L	2	3	4	Н	L	2	3	4	Н	-
				Panel A	A: Annual	samples with	disasters				-
	-		$E[R^e]$					t _R e			
Small	13.69	14.54	15.95	17.90	23.37	12.34	11.38	10.77	10.43	10.26	-
2	12.33	13.29	14.21	15.45	18.90	12.00	11.71	11.43	11.25	10.78	
3	12.05	12.17	12.42	12.95	14.62	10.00	12.01	11.91	11.33	10.33	
4	10.57	10.40	10.42	10.85	13.84	12.01	11.89	11.47	10.59	10.41	
Big	7.96	7.92	8.18	8.86	10.14	10.16	9.96	9.80	9.67	9.23	
	-		β ^c					t _β c			
Small	-0.64	-0.77	-0.93	-1.15	-1.28	-0.61	-0.68	-0.72	-0.74	-0.47	-
2	-0.49	-0.59	-0.72	-0.89	-1.34	-0.55	-0.62	-0.69	-0.81	-0.97	(
3	-0.43	-0.47	-0.53	-0.64	-0.74	-0.50	-0.56	-0.63	-0.72	-0.70	``
4	-0.32	-0.33	-0.36	-0.46	-0.69	-0.41	-0.46	-0.52	-0.64	-0.79	、
Big	-0.07	-0.08	-0.10	-0.22	-0.23	-0.01	-0.04	-0.08	-0.28	-0.09	
				Panel B: 0	Quarterly	samples witho	out disaste	ГS			
			$E[R^e]$					t _{Re}			_
Small	3.16	3.31	3.56	3.92	5.17	45.90	34.22	31.77	32.39	29.73	
2	2.89	3.08	3.24	3.45	4.09	29.73	31.09	31.73	32.26	28.72	(
3	2.84	2.85	2.88	2.96	3.33	16.28	29.04	30.16	28.11	19.54	(
4	2.53	2.48	2.47	2.53	3.19	23.35	23.40	21.99	18.86	18.87	
Big	1.93	1.91	1.96	2.07	2.42	13.66	13.75	14.14	15.06	14.71	
			β ^c					t _β c			_
Small	0.11	0.12	0.12	0.13	0.27	1.45	1.13	0.96	0.95	1.39	
2	0.12	0.12	0.13	0.13	0.18	1.10	1.04	1.10	1.09	1.14	
3	0.16	0.13	0.14	0.16	0.25	0.83	1.19	1.30	1.36	1.30	
4	0.16	0.18	0.22	0.24	0.24	1.33	1.54	1.71	1.56	1.37	
Big	0.74	0.93	1.08	0.94	0.85	4.83	6.32	7.60	6.51	4.74	
		Panel C: /	Annual sar	nples with	n fourth-q	uarter consun	nption gro	wth witho	ut disaster	rs	
			$E[R^e]$					t _{Re}			_
Small	13.54	14.20	15.34	17.00	22.80	43.01	32.13	30.08	30.64	28.12	
2	12.35	13.21	13.91	14.86	17.76	28.37	29.75	30.32	30.72	27.52	
3	12.13	12.15	12.28	12.63	14.31	15.79	27.81	28.90	26.74	18.91	
4	10.75	10.53	10.48	10.72	13.66	22,29	22.50	21.19	18.31	18.16	
Big	8.13	8.04	8.25	8.75	10.28	13.21	13.29	13.76	14.64	14.31	
			β ^c					t _β c			_
Small	0.21	0.23	0.22	0.24	0.50	1.55	1.23	0.99	1.01	1.42	
2	0.24	0.22	0.24	0.25	0.31	1.27	1,17	1.23	1.18	1.11	
3	0.27	0.22	0.24	0.26	0.35	0.83	1.17	1.30	1.28	1.07	
4	0.26	0.28	0.30	0.32	0.36	1.21	1.38	1.38	1.27	1.09	
Big	0.82	0.97	1.08	0.95	0.84	3.22	4.03	4.62	4.02	2.82	

(5) Explaining the poor performance of the consumption CAPM

1) Explaining the higher average value premium in small firms

2 Explaining the failure of the consumption CAPM

(5) Explaining the poor performance of the consumption CAPM

(2)Explaining the failure of the consumption CAPM

	Panel A	A: Annual, with disasters	Panel B	: Quarterly, without disasters	Panel C	: Fourth-quarter, without disasters
	ϕ_0	ϕ_1	ϕ_0	ϕ_1	ϕ_0	ϕ_1
Estimates	9.09	-6.48	3.34	-1,19	14.05	-3.40
2.5	5.28	-13.46	3.14	-1.67	12.83	-6.81
97.5	13.70	1.46	3.53	-0.72	15.37	-0.48
t _{FM}	15.57	-6.30	73.94	-13.67	63.93	-8.61
2.5	6.55	-12.84	53.97	-18.11	49.83	-15.53
97.5	52.25	1.48	83.30	-8.26	79.11	-1.28
ts	8.22	-3.31	44.22	-9.14	36.59	-5.33
2.5	3.81	-5.95	27.35	-10.94	19.28	-7.77
97.5	25.46	1.45	58.20	-6.77	60.92	-1.26
χ^2		194.32		114.99		173.29
2.5		35.69		41.59		17.16
97.5		1171.4		418.4		<u>1123.3</u>
p_{χ^2}		0.01		0.00		0.07
2.5		0.00		0.00		0.00
97.5		0.04		0.01		0.80
R ²		0.61		0.30		0.16
2.5		0.01		0.12		0.00
97.5		0.95		0.49		0.46

We interpret the insignifificance as probably due to the lack of power of the test, as only 25% of the observations are used

Panel A: First-stage time series regressions											
	L	2	3	4	Н	L	2	3	4	Н	
			β^{M}					t _{βM}			
			An	nual sam	ples with	disaster	s				
Small	0.04	0.04	0.04	0.05	0.07	8.26	7.87	7.58	7.20	7.08	
2	0.03	0.04	0.04	0.04	0.05	8.51	8.25	8.04	7.85	7.71	
3	0.03	0.03	0.03	0.04	0.04	8.26	8.53	8.34	8.03	7.49	
4	0.03	0.03	0.03	0.03	0.04	8.94	8.79	8.63	8.16	8.47	
Big	0.02	0.02	0.02	0.02	0.03	8.79	8.53	8.26	7.76	7.49	
			Quar	terly sam	ples with	out disas	sters				
Small	0.12	0.13	0.14	0.15	0.25	7.78	5.74	5.20	5.32	6.11	
2	0.12	0.12	0.13	0.14	0.17	5.09	5.26	5.36	5.49	5.17	
3	0.12	0.12	0.12	0.12	0.15	2.99	5.10	5.32	4.95	3.70	
4	0.11	0.11	0.11	0.11	0.15	4.29	4.27	4.08	3.53	3.57	
Big	0.09	0.10	0.10	0.10	0.12	2.66	2.81	2.91	2.99	2.90	
	Small 2 3 4 Big Small 2 3 4 Big	L Small 0.04 2 0.03 3 0.03 4 0.03 Big 0.02 Small 0.12 2 0.12 3 0.12 4 0.11 Big 0.09	L 2 Small 0.04 0.04 2 0.03 0.04 3 0.03 0.03 4 0.03 0.03 Big 0.02 0.02 Small 0.12 0.13 2 0.12 0.12 3 0.12 0.12 3 0.12 0.12 3 0.12 0.12 4 0.11 0.11 Big 0.09 0.10	L 2 3 $\hat{\beta}^M$ $\hat{\beta}^M$ Small 0.04 0.04 0.04 2 0.03 0.04 0.04 3 0.03 0.03 0.03 4 0.03 0.03 0.03 Big 0.02 0.02 0.02 Quar Small 0.12 0.13 0.14 2 0.12 0.12 0.13 3 3 0.12 0.12 0.12 1.13 3 0.12 0.12 0.12 4 4 0.11 0.11 0.11 0.11 Big 0.09 0.10 0.10 0.10	Panel A: First-stagL234 $\hat{\beta}^M$ Annual samSmall0.040.040.040.0520.030.040.040.0430.030.030.030.0440.030.030.030.03Big0.020.020.020.02Quarterly samSmall0.120.130.1430.120.120.120.1240.110.110.110.11Big0.090.100.100.10	Panel A: First-stage time set L 2 3 4 H $\hat{\beta}^M$ Annual samples with Small 0.04 0.04 0.04 0.05 0.07 2 0.03 0.04 0.04 0.04 0.05 3 0.03 0.03 0.03 0.04 0.04 4 0.03 0.03 0.03 0.03 0.04 Big 0.02 0.02 0.02 0.02 0.03 Small 0.12 0.13 0.14 0.15 0.25 2 0.12 0.12 0.12 0.12 0.15 Big 0.12 0.12 0.12 0.15 0.15 Big 0.09 0.10 0.10 0.10 0.12	Panel A: First-stage time series regrL234HL $\hat{\beta}^M$ Annual samples with disasterSmall0.040.040.040.050.078.2620.030.040.040.040.058.5130.030.030.030.048.94Big0.020.020.020.020.038.79Quarterly samples without disasterSmall0.120.130.140.150.257.7820.120.120.130.140.175.0930.120.120.120.120.152.9940.110.110.110.110.122.66	Panel A: First-stage time series regressionsL234HL2 $\hat{\beta}^M$ Annual samples with disastersSmall0.040.040.040.050.078.267.8720.030.040.040.040.058.518.2530.030.030.030.048.948.79Big0.020.020.020.020.038.798.53Quarterly samples without disastersSmall0.120.130.140.150.257.785.7420.120.120.130.140.175.095.2630.120.120.120.120.152.995.1040.110.110.110.110.154.294.27Big0.090.100.100.100.122.662.81	Panel A: First-stage time series regressionsL234HL23 $\hat{\beta}^M$ First-stage time series regressionsSmall 0.040.040.04CSmall 0.040.040.040.058.267.5820.030.040.040.058.518.258.0430.030.030.030.048.268.538.3440.030.030.030.030.048.948.798.63Big0.020.020.020.020.038.798.538.26Small0.120.130.140.150.257.785.745.2020.120.120.130.140.175.095.265.3630.120.120.120.152.995.105.3240.110.110.110.110.154.294.274.08Big0.090.100.100.100.122.662.812.91	Panel A: First-stage time series regressionsL234HL234 $\hat{\beta}^M$ $t_{\hat{\beta}M}$ Annual samples with disastersSmall 0.04 0.04 0.04 0.05 0.07 8.26 7.87 7.58 7.2020.03 0.04 0.04 0.04 0.050.07 8.26 8.51 8.25 8.04 7.8530.03 0.03 0.03 0.04 0.04 8.94 8.79 8.63 8.16Big0.02 0.02 0.02 0.02 0.02 0.03 8.79 8.53 8.26 7.76Small 0.12 0.13 0.14 0.15 0.25 7.78 5.74 5.20 5.3220.12 0.13 0.14 0.15 0.25 7.78 5.74 5.20 5.3230.12 0.12 0.13 0.14 0.17 5.09 5.26 5.36 5.4930.12 0.12 0.12 0.12 0.12 0.15 2.99 5.10 5.32 4.9540.11 0.11 0.11 0.11 0.11 0.15 4.29 4.27 4.08 3.53Big0.09 0.10 0.00 0.10 0.10 0.12 2.66 2.81 2.91 2.99	

Panel B: Second-stage cross-sectional regressions

	Annual, v	vith disasters	Quarterly, without disast					
	$\hat{\phi}_0$	$\hat{\phi}_{\scriptscriptstyle M}$	$\hat{\phi}_0$	$\hat{\phi}_{\scriptscriptstyle M}$				
Estimates	0.01	5.19	0.02	0.11				
2.5	-0.01	0.36	0.01	0.06				
97.5	0.06	7.69	0.02	0.26				
t _{FM}	2.43	8.35	19.27	15.46				
2.5	-1.48	3.17	7.44	8.76				
97.5	17.71	18.90	30.21	20.65				
ts	0.90	3.56	6.82	5.42				
2.5	-0.60	1.54	1.93	3.78				
97.5	5.65	7.09	14.23	8.04				
χ^2		30.96		26.87				
2.5		9.09		10.99				
97.5		119.08		55.42				
p_{χ^2}		0.55		0.51				
2.5		0.00		0.00				
97.5		1.00		0.98				
R ²		0.89		0.43				
2.5		0.55		0.13				
97.5		0.97		0.79				

- clusion の少子なが注大学

Ν

table11 the true pricing kernel in the model

(1) magnitude of the regression-based estimates of β is **largely in line with** that of the true beta calculated on the grid (Panel D of Fig. 6).

②pricing kernel's volatility is higher in samples with disasters than without disasters, meaning that the realized pricing of risk, φMt, is lower in samples without disasters. introduction Stylized-facts Model Simulation Conclusion

(5) Explaining the poor performance of the consumption CAPM

(2)Explaining the failure of the consumption CAPM

Panel A: Annual samples with disasters

Panel B: Quarterly samples without disasters

(6) Comparative statics

(1) the CAPM regressions of the book-to-market deciles.

	λ_D	θ	η	ν	λ_R	<i>a</i> +	а-	<i>c</i> +	с-	ξ	f	S	κ	Ĩ	γ	ψ
		Panel A: Samples with disasters														
$E[R^e]$	0.75	0.41	0.49	0.45	0.45	0.30	0.53	0.44	0.43	0.38	0.51	0.22	0.39	0.44	0.55	0.52
t_{R^e}	6.67	4.29	4.87	4.54	4.75	3.68	5.17	4.72	4.53	5.09	5.09	3.60	4.31	4.72	6.35	4.55
α	-0.46	-0.63	-0.32	-0.37	-0.35	-0.25	-0.34	-0.34	-0.39	-0.52	-0.29	-0.19	-0.39	-0.36	-0.40	-0.44
tα	-2.47	-2.96	-2.34	-2.62	-2.49	-2.10	-2.37	-2.58	-2.65	-2.88	-2.11	-2.08	-2.69	-2.49	-2.41	-2.65
β	1.09	1.08	1.03	1.00	0.99	0.69	1.08	1.05	1.04	1.11	1.00	0.54	0.98	1.01	0.95	0.98
tβ	8.04	8.40	8.08	8.07	7.91	6.85	7.87	7.97	8.11	7.66	7.85	7.86	8.10	8.01	7.66	7.89
							Panel B:	Samples	without	disasters						
$E[R^e]$	0.62	0.53	0.42	0.39	0.39	0.21	0.41	0.37	0.40	0.40	0.41	0.22	0.37	0.39	0.52	0.43
t_{R^e}	10.84	9.53	7.95	7.52	7.55	3.94	7.95	7.63	7.69	10.40	7.46	4.45	7.14	7.51	9.36	8.07
α	0.51	0.44	0.31	0.26	0.25	-0.06	0.28	0.31	0.26	0.22	0.23	0.15	0.22	0.25	0.40	0.34
tα	3.26	3.07	2.71	2.28	2.22	-0.61	2.47	2.98	2.34	2.08	1.93	1.37	1.98	2.22	2.79	2.75
β	0.09	0.09	0.14	0.17	0.17	0.34	0.16	0.08	0.17	0.21	0.23	0.09	0.18	0.18	0.11	0.10
t _β	0.68	0.65	1.12	1.35	1.41	2.94	1.23	0.59	1.37	1.74	1.79	0.76	1.48	1.40	0.86	0.85

(6) Comparative statics

②the CAPM regressions of the preranking market beta deciles.

	λ_D	θ	η	ν	λ_R	<i>a</i> +	а-	c +	с-	ξ	f	S	κ	Ñ	γ	ψ
	Panel A: Samples with disasters															
$E[R^e]$	0.08	0.01	0.08	0.07	0.07	0.05	0.07	0.06	0.06	0.03	0.06	-0.81	0.06	0.06	0.06	0.06
t_{R^e}	1.00	0.25	1.08	0.97	0.92	0.68	0.90	0.88	0.83	0.88	0.86	-4.26	0.84	0.84	0.84	0.84
α	-0.30	-0.22	-0.20	-0.24	-0.24	-0.22	-0.24	-0.23	-0.24	-0.25	-0.24	-1.09	-0.24	-0.24	-0.24	-0.24
tα	-1.69	-1.47	-1.62	-1.81	-1.74	-1.68	-1.70	-1.71	-1.78	-1.86	-1.73	-3.23	-1.74	-1.76	-1.77	-1.74
β	0.33	0.24	0.35	0.38	0.37	0.33	0.37	0.37	0.37	0.34	0.37	0.66	0.37	0.37	0.37	0.37
tβ	2.46	2.28	2.56	2.79	2.62	2.29	2.56	2.53	2.63	2.92	2.58	3.18	2.56	2.61	2.55	2.59
							Panel B:	Samples	without	disasters						
E[R ^e]	-0.03	-0.03	-0.02	-0.02	-0.01	-0.03	-0.02	-0.02	-0.02	0.00	-0.02	-0.07	-0.02	-0.02	-0.02	-0.02
t _{Re}	-0.50	-0.55	-0.48	-0.51	-0.29	-0.52	-0.34	-0.32	-0.47	0.01	-0.48	-1.38	-0.47	-0.49	-0.40	-0.49
α	-0.27	-0.25	-0.21	-0.21	-0.20	-0.21	-0.19	-0.19	-0.21	-0.16	-0.21	-0.25	-0.21	-0.21	-0.20	-0.21
tα	-1.89	-1.90	-2.00	-1.97	-1.85	-2.04	-1.82	-1.80	-1.98	-1.53	-1.95	-2.42	-1.95	-1.97	-1.90	-1.97
β	0.22	0.22	0.23	0.23	0.23	0.23	0.22	0.22	0.23	0.19	0.23	0.24	0.23	0.23	0.23	0.23
t _β	1.87	1.87	2.03	1.98	1.97	2.13	1.89	1.89	2.01	1.72	1.98	2.09	1.97	1.99	2.02	1.99

(6) Comparative statics

③the consumption CAPM test on the 25 size and book-to-market portfolios

	λ_D	θ	η	ν	λ_R	<i>a</i> +	а-	с+	с-	ξ	f	5	κ	Ñ	γ	ψ
						Pa	anel A: A	nnual san	nples wit	h disaste	rs					
ϕ_0	9.04	10.06	8.62	9.16	9.66	9.01	9.02	8.91	9.04	8.95	8.96	10.26	9,01	9.01	8.91	9.02
t _{FM}	14.53	12.59	12.72	13.97	14.35	15.22	15.22	14.99	15.53	15.32	15.31	13.35	15.18	15.18	15.06	15.27
ts	7.92	7.63	6.95	7.35	7.52	7.97	7.97	7.90	8.09	7.98	8.02	9.96	7.98	7.97	7.86	7.94
ϕ_1	-7.15	-5.64	-7.06	-7.68	-7.91	-6.57	-6.56	-6.62	-6.57	-6.23	-6.59	-3.17	-6.55	-6.55	-6.57	-6.65
t _{FM}	-6.56	-4.64	-5.80	-5.99	-6.29	-6.37	-6.37	-6.38	-6.42	-6.37	-6.40	-4.74	-6.35	-6.31	-6.33	-6.42
ts	-3.71	-2.65	-3.17	-3.09	-3.26	-3.32	-3.32	-3.33	-3.37	-3.32	-3.35	-3.90	-3.32	-3.29	-3.30	-3.34
χ^2	166.8	208.8	132.1	147.5	157.8	174.2	174.5	172.8	183.2	186.9	181.0	464.7	175.07	174.5	170.81	174.9
p_{χ^2}	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.01	0.01	0.01	0.01
R^2	0.66	0.48	0.66	0.64	0.64	0.63	0.62	0.63	0.62	0.63	0.63	0.56	0.62	0.62	0.63	0.63
						Pane	l B: Quar	terly sam	ples with	nout disa	sters					
ϕ_0	3.34	3.34	3.34	3.33	3.34	3.34	3.34	3.34	3.34	3.35	3.34	2.99	3.34	3.34	3.34	3.34
t _{FM}	73.61	73.86	72.80	73.25	73.42	73.48	73.57	73.82	74.28	73.25	73.27	60.72	73.57	73.47	74.04	73.42
ts	44.17	43.88	43.33	43.42	43.96	44.05	44.10	44.43	44.12	44.02	44.05	38.75	44.20	43.98	44.23	43.87
ϕ_1	-1.19	-1.21	-1.20	-1.28	-1.21	-1.19	-1.19	-1.18	-1.21	-0.99	-1.19	-1.09	-1.19	-1.19	-1.20	-1.19
t _{FM}	-13.64	-13.79	-13.75	-13.78	-13.66	-13.65	-13.66	-13.59	-13.81	-13.15	-13.58	-11.06	-13.61	-13.68	-13.73	-13.66
ts	-9.16	-9.14	-9.16	-9.06	-9.13	-9.16	-9.17	-9.15	-9.19	-8.74	-9.12	-7.64	-9.14	-9.17	-9.17	-9.15
χ^2	123.0	135.6	96.7	107.3	136.5	112.9	112.5	114.1	116.2	110.0	111.2	242.4	112.40	112.7	117.60	112.1
p_{χ^2}	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
R^2	0.29	0.30	0.30	0.30	0.29	0.29	0.29	0.29	0.30	0.27	0.29	0.40	0.29	0.30	0.30	0.29

Rare disasters help explain the value premium puzzle ------value stocks earn higher average returns than growth stocks, despite their similar market betas.

the model also explains the beta anomaly-----due to severe beta measurement errors, the relation between the preranking market beta and the average return is flat in the model's simulations

A fundamental innovation of our work relative to prior theoretical models is general equilibrium in which consumption and the pricing kernel are endogenous.

In addition, the widely documented empirical failures of standard asset pricing models might have more to do with the deficiencies of standard empirical tests rather than deficiencies of economic theory

THANKS Q&A