A Simple Multimarket Measure of Information Asymmetry

MS 2018.01 Travis L. Johnson Eric C. So

汇报人: 孙利梦 2020年10月21日

Travis L. Johnson Born in USA

D Education

B.S. in Mathematics, Minor in Economics,Massachusetts Institute of Technology,2007

Ph.D. in Finance, Stanford University Graduate School of Business, 2012

□ Academic Appointments

Assistant Professor of Finance, McCombs School of Business, The University of Texas at Austin, 2012-Present Visiting Assistant Professor of Finance, Sloan School of Management, Massachusetts Institute of Technology, 2015-2016

D Research Areas

Information and frictions in financial markets, return predictability, asset management, derivative securities

Eric C. So (苏子英)

Education

He holds an MA in economics from Cornell University

and a PhD in business administration from Stanford University's Graduate School of Business.

Prior to completing his PhD, So worked as a research analyst at the Nasdaq Stock Market in the Economic Research department.

□ Academic Appointments

The Sarofim Family Career Development Professor

and an Associate Professor in the Economics, Finance, and Accounting Area of the MIT Sloan School of Management.

Research Areas

His research interests include equity valuation, asset pricing, option markets, security analysts, and limits to arbitrage with a focus on the forces and mechanisms that shape the information content of market prices.

shanxi university

Abstract

- We develop and implement a new measure of information asymmetry among traders. Our measure is based on the intuition that informed traders are more likely than uninformed traders to generate abnormal volume in options or stock markets.
- We formalize this intuition theoretically and compute the resulting multimarket information asymmetry measure (MIA) for firm-days as a function of unsigned volume totals and without estimating a structural model.
- > Empirically, MIA has many desirable properties:

it is positively correlated with spreads, price impact, and absolut order imbalances; predicts future volatility; is an effective conditioning variable for trading strategies stemming from price pressure; and detects exogenous shocks to information asymmetry.

Background

An important variable in most theoretical and empirical work on information economics in financial markets is the fraction of volume originating from informed traders.

alternative proxy	example	advantages	disadvantages
simple characteristics of the stock	firm size , analyst coverage	easy to calculate intuitively correlated with information asymmetry	noisy , difficult to interpret
structural estimates of model parameters.	PIN	a theoretical connection to information asymmetry; not confounded by liquidity or cash flows	computationally intensive

alternative proxies for information asymmetry among traders

Duarte et al. (2015) show that measures based on estimates of order imbalances alone, including PIN, are ineffective and note that "a different approach involving variables other than order flow is necessary to generate useful inferences about the arrival of informed trade"

Our approach responds to this call by leveraging the dispersion of trades across options and stock markets. Compare to PIN, MIA 's advantages:

- using volume imbalances across markets
- does not require estimating a structural model
- MIA can be estimated at the daily level
- MIA extends the scope of the analysis to measure informed trade across multiple markets.

1. Introduction

Our multimarket information asymmetry measure, MIA, is a simple function of unsigned volume totals based on the idea that informed traders face a leverage constraint that generates a trade-off between smaller price impact in equity markets and additional leverage in options markets.

$$MIA_{j,t} = \frac{|O_{j,t}/S_{j,t} - M_{j,t}|}{O_{j,t}/S_{j,t} + M_{j,t}},$$
(1)

where $M_{j,t}$ is an estimate of average O/S in the absence of informed trade.

The main	/orka baseline model: a constant fraction of uninformed trade informed trading volume is concentrated entirely in either options or stock markets	
	extended model: strategic trading(a leverage constraint) a random fraction of uninformed trading volume	
MIA	Empirical Tests associations:bid-ask spreads, price impact, and absolute order imbalances. predictions: future volatility incremental to contemporaneous volumes and volatilities volatility incremental to option-implied volatility conditioning:the returns of a daily reversal strategy the returns of implied-volatility-spread trading strategy	3
	additional analyses exogenous shocks:terminations of analyst coverage	5

contribution

- ➤ The central contribution of this paper is the development of a new proxy for information asymmetry among traders that leverages how trades are dispersed across equity and options markets.
- ➤ An important contribution of our paper is to show that information asymmetry is better measured by absolute changes in O/S, rather than levels or signed changes of O/S.
- ➤ Another related use of levels and signed changes in O/S are as proxies for the sign rather than magnitude of private information.

3. Model and Empirical Predictions

$$MIA_{j,t} = \frac{|O_{j,t}/S_{j,t} - M_{j,t}|}{O_{j,t}/S_{j,t} + M_{j,t}},$$
(2)

 $M_{j,t}$ is the median value of O/S for firm j.

(1) Baseline Model: Ideal Conditions

$$S_t = S_{i,t} + S_{u,t},\tag{3}$$

$$O_t = O_{i,t} + O_{u,t}.$$
 (4)

$$u_t \equiv \frac{O_{u,t}}{O_{u,t} + S_{u,t}},$$

$$i_t \equiv \frac{O_{i,t}}{O_{i,t} + S_{i,t}}.$$
(5)
(6)

$$\theta_t \equiv \frac{O_{i,t} + S_{i,t} \cdot M}{O_t + S_t \cdot M},\tag{7}$$

Theorem 1. If informed traders use options or stock markets exclusively ($i_t = \{0 \text{ or } 1\}$), a constant fraction of uninformed traders use options ($u_t = \overline{u}$), and $M = \overline{u}/(1-\overline{u})$, then MIA exactly equals the fraction of trades that are informed θ_t .

informed traders
using options
$$MIA_{t} \equiv \frac{|O_{t} - S_{t} \cdot M|}{O_{t} + S_{t} \cdot M} = \frac{|O_{i,t} + V_{u,t} \cdot \bar{u} - V_{u,t} \cdot (1 - \bar{u}) \cdot M|}{O_{t} + S_{t} \cdot M}$$

$$= \frac{O_{i,t}}{O_{t} + S_{t} \cdot M} = \theta_{t}, \qquad (8)$$

$$MIA_{t} \equiv \frac{|O_{t} - S_{t} \cdot M|}{O_{t} + S_{t} \cdot M}$$

$$= \frac{|V_{u,t} \cdot \bar{u} - V_{u,t} \cdot (1 - \bar{u}) \cdot M - S_{i,t} \cdot M|}{O_{t} + S_{t} \cdot M}$$

$$= \frac{S_{i,t} \cdot M}{O_{t} + S_{t} \cdot M} = \theta_{t}. \qquad (9)$$

(2) Extended Model: Strategic Trading

Assumptions: u_t fluctuates over time and i_t is often between 0 and 1.

Like Back (1993), our model allow strategic trading in options as well as the underlying stock. The key addition we make to the Back (1993) model is a margin requirement, or equivalently a leverage constraint, limiting the position sizes of the informed trader.

• Model Setup

Trading occurs at time t = 0 between three types of agents: market makers, uninformed traders, and informed traders.

The informed trader chooses optimal demands $y_i \equiv (y_s, y_c, y_p)$ to maximize expected profits subject to the margin constraint.

$$m(y_i) \equiv |y_s| + \lambda(|y_c| + |y_p|) \le \bar{m},$$
 (12)

$$y_i(v) = \underset{\substack{y \text{ s.t. } m(y) \le \tilde{m} \\ + y_p((\bar{v} - v)^+ - \mathbb{E}(\tilde{p}_0))} + y_c((v - \bar{v})^+ - \mathbb{E}(\tilde{c}_0))$$
(13)

In choosing their demand $y_i(v)$, the informed trader takes into account the impact of their demand on expected prices. They compute these expected prices based on the equilibrium pricing functions market makers use and the distribution of possible uninformed trader demands.

$$\begin{split} s(x_s) &= \mathbb{E}(\tilde{v} \mid y_s(\tilde{v}) + \tilde{z}_s = x_s), \quad (14) \\ c(x_c) &= \mathbb{E}(\tilde{c} \mid y_c(\tilde{v}) + \tilde{z}_c = x_c), \quad (15) \\ p(x_p) &= \mathbb{E}(\tilde{p} \mid y_p(\tilde{v}) + \tilde{z}_p = x_p). \quad (16) \end{split}$$

• Model Equilibrium

The nonlinearity of both the options' payoffs and the margin constraint prevent us from deriving a closed-form solution. Instead, we solve the model numerically for a variety of parameter values given in panel A of Table 1.

Panel A: Parameter values								
Parameter	Description	Value						
ō	Average stock value	10						
σ_{p}	Standard deviation of stock value	1						
$\sigma_{z,s}$	Standard deviation of uninformed of stock demand	1						
$\sigma_{z,c}$	Standard deviation of uninformed call demand	0.5						
$\sigma_{z,p}$	Standard deviation of uninformed put demand	0.5						
λ	Margin requirement for options relative to shares of stock	0.4						
\overline{m}	Margin constraint in number of shares	1						
ϕ	Probability there is an informed trader	25%, 50%, 75%, or 100%						
σ_{u}	Standard deviation of fraction of uninformed volume in options	0%, 1%, 2%, or 5%						
ū	Average fraction of uninformed volume in options	50%						
V_u	Total volume of uninformed traders	3 or 6						

Table 1. Model Parameters and Simulations

Figure 2. Equilibrium Price Functions in the Model

Simulations(which parameter choices determine the effectiveness of MIA)

We hypothesize that abnormal O/S indicates informed trade, making MIA an effective measure, as long as the fraction of uninformed trading volume in options markets is less volatile than the fraction of informed volume.

$$O_u = V_u \cdot \tilde{u}, \qquad (17)$$

$$S_u = V_u \cdot (1 - \tilde{u}). \qquad (18)$$

$$\theta_t \equiv \frac{O_{i,t} + S_{i,t} \cdot M}{O_t + S_t \cdot M} \qquad \text{MIA}_t \equiv \frac{|O_t - S_t \cdot M|}{O_t + S_t \cdot M}. \tag{19}$$

we use the cross-observation median of O/S as M.

We measure the effectiveness of MIA as a proxy for θt in two ways.

1.whether average MIA increases across simulated samples as we increase ϕ or decrease V_u , both of which should increase the prevalence of informed trade.

2.whether average MIA is higher within simulated samples among the observations where there is informed trade compared to the observations where there is no informed trade.

	$V_u = 3$					$V_u = 6$			
φ	0.25	0.50	0.75	1.00	0.25	0.50	0.75	1.00	
Ŵ	1.000	1.000	1.000	0.996	1.000	1.000	1.000	0.998	
Mean θ (%) Mean MIA (%)	5.14 1.16	9.92 2.13	14.08 3.12	17.62 3.89	2.87 0.66	2.87 1.19	7.77 1.72	9.67 2.12	
$\sigma(O/S)$ inf (%) $\sigma(O/S)$ no inf (%)	3.51 0.00	3.29 0.00	3.01 0.00	2.69	2.00 0.00	1.85 0.00	1.66 0.00	1.47	
Mean MIA inf (%) Mean MIA no inf (%)	4.65 0.00	4.26 0.00	4.16 0.00	3.89	2.63 0.00	2.39 0.00	2.29 0.00	2.12	
		1	Panel C: σ_u	= 1%					
		V	u = 3			V_u	= 6		
φ	0.25	0.50	0.75	1.00	0.25	0.50	0.75	1.00	
Ŵ	1.005	1.004	1.004	1.003	1.004	1.006	1.007	1.009	
Mean θ (%) Mean MIA (%)	5.15 2.46	9.92 3.15	14.08 3.76	17.62 4.18	2.87 2.02	5.51 2.32	7.77 2.55	9.66 2.66	
$\sigma(O/S)$ inf (%) $\sigma(O/S)$ no inf (%)	3.59 1.00	3.39 1.00	3.11 1.00	2.82	2.18 1.00	2.05 1.00	1.88 1.00	1.72	
Mean MIA inf (%) Mean MIA no inf (%)	5.01 1.61	4.69 1.60	4.48 1.60	4.18	3.26 1.61	3.03 1.61	2.86 1.62	2.66	

Panel B: $\sigma_u = 0\%$

		1	Panel D: σ_u	=2%				
V _u = 3						$V_u = 6$		
φ	0.25	0.50	0.75	1.00	0.25	0.50	0.75	1.00
Ŵ	1.009	1.011	1.014	1.016	1.007	1.011	1.014	1.017
Mean θ (%) Mean MIA (%)	5.14 3.85	9.91 4.32	14.06 4.69	17.60 4.88	2.87 3.47	5.51 3.63	7.76 3.70	9.66 3.69
$\sigma(O/S)$ inf (%) $\sigma(O/S)$ no inf (%)	3.85 2.00	3.66 2.00	3.42 2.00	3.16	2.67 2.00	2.57 2.00	2.44 2.00	2.33
Mean MIA inf (%) Mean MIA no inf (%)	5.78 3.21	5.42 3.22	5.18 3.24	4.88	4.28 3.20	4.04 3.22	3.86 3.25	3.69
			Panel E: σ_u	= 5%				
		V_{i}	u = 3			V _u	= 6	
φ	0.25	0.50	0.75	1.00	0.25	0.50	0.75	1.00
Ŵ	1.016	1.024	1.031	1.034	1.011	1.017	1.021	1.022
Mean θ (%) Mean MIA (%)	5.15 8.16	9.91 8.15	14.05 8.04	17.59 7.83	2.87 7.96	5.50 7.86	7.76 7.73	9.66 7.58
$\sigma(O/S)$ inf (%) $\sigma(O/S)$ no inf (%)	5.30 5.00	5.19 5.00	5.05 5.00	4.92	4.86 5.00	4.82 5.00	4.78 5.00	4.75
Mean MIA inf (%) Mean MIA no inf (%)	8.60 8.01	8.26 8.04	8.03 8.07	7.83	7.86 7.99	7.72 8.01	7.63 8.02	7.58

4.empirical tests

Sample Construction:Our final sample is dictated by the intersection of OptionMetrics, Compustat, and CRSP data.

$$MIA_{j,t} = \frac{|O_{j,t}/S_{j,t} - M_{j,t}|}{O_{j,t}/S_{j,t} + M_{j,t}},$$
(20)

We use the firm's median O/S over the past six months ending 10 trading days before t as our estimate of M, assuming the median O/S occurs on a day with no private information.

Table 2. Sample Descriptive Statistics

Panel A: Sample characteristics by year							
	Firms	Firm-days	%CC		MEAN	MEDIAN	SD
1996	664	74,978	0.650)	0.427	0.347	0.280
1997	883	127,236	0.763	1	0.438	0.354	0.283
1998	1,045	146,497	0.806	i	0.450	0.364	0.289
1999	1,134	160,268	0.860)	0.430	0.350	0.282
2000	1,380	201,137	0.838	\$ 	0.443	0.356	0.288
2001	1,254	178,232	0.738	\$	0.494	0.405	0.299
2002	1,118	168,768	0.666	i i	0.493	0.413	0.304
2003	1,047	158,754	0.865	;	0.469	0.385	0.290
2004	1,215	191,111	0.800)	0.464	0.388	0.291
2005	1,316	203,525	0.76		0.460	0.385	0.287
2006	1,470	236,129	0.825	•	0.456	0.384	0.288
2007	1,645	257,755	0.885		0.468	0.395	0.290
2008	1,656	270,077	0.778	\$ 	0.485	0.407	0.300
2009	1,501	234,094	0.926		0.497	0.399	0.300
2010	1,466	243,205	0.7%		0.469	0.396	0.293
2011	1,471	242,739	0.890)	0.459	0.378	0.295
2012	1,361	216,386	0.907		0.466	0.379	0.293
2013	1,368	222,935	0.930)	0.453	0.368	0.288
A11	1,307	201,302	0.814		0.465	0.384	0.292
		Panel B: I	Descriptive statisti	cs across M	IA quintiles		
	SIZE	LBM	COV	DISP	0	s	O/S
1 (Low MIA)	15.282	0.307	12.174	0.389	316,786	3,507,197	6.294
2	15.212	0.309	11.963	0.391	283,740	3,250,548	6.199
3	15.058	0.314	11.416	0.410	211,817	2,679,653	6.090
4	14.830	0.323	10.589	0.440	153,337	2,008,917	6.565
6 (High MIA)	14.338	0.350	8.979	0.759	112,715	1,603,517	7.034
High - Low	-0.943	0.043	-3.196	0.370	-204,070	-1,903,679	0.740
			Panel C: Average	e correlation	ъ		
	MIA	SIZE	LBM	[COV	DISP	O/S
MIA		-0.228	0.07	5	-0.142	0.064	0.005
SIZE	-0.202		-0.09	4	0.471	-0.220	0.129
LBM	0.083	-0.093			-0.073	0.154	-0.104
COV	-0.122	0.438	-0.07	3		-0.185	0.119
DISP	0.064	-0.339	0.38	5	-0.121		-0.014
0/S	-0.260	0.189	-0.15	9	0.074	-0.054	
							山

Associations with MIA

(1) if MIA is an effective proxy for information asymmetry among traders, it should be positively related to bid-ask spreads and price impact regardless of where abnormal volume is currently concentrated..

(2) If MIA is a good proxy for information asymmetry, it should be positively associated with order imbalances.

(3)Our model predicts that equity market imbalances are more closely related to the extent of information asymmetry when informed traders concentrate a higher fraction of their volume in equity markets, making O/S smaller than M.

Dep. variable:	Equity	Equity spreads Option spreads ILLIQ			LIQ	
	(1)	(2)	(3)	(4)	(5)	(6)
MIA	0.010 (9.80)	0.010 ^{•••} (9.92)	0.002*** (7.07)	0.002** (7.21)	0.003** (3.74)	0.002** (3.18)
Lag(-1)	0.191 (31.76)	0.191 (31.67)	0.412*** (91.53)	0.412*** (91.53)	0.226*** (107.81)	0.225** (107.28)
Lag(-2)	0.173- (34.62)	0.173- (34.52)	0.184*** (68.44)	0.184*** (68.34)	0.202*** (102.30)	0.202** (101.43)
Lag(-3)	0.159*** (33.95)	0.159 ^{***} (33.78)	0.186 ^{***} (77.10)	0.186"* (77.09)	0.189*** (92.40)	0.188** (92.20)
Lag(-4)	0.162 ^m (35.14)	0.162*** (35.19)	0.202*** (75.01)	0.202*** (75.08)	0.182*** (87.33)	0.182"" (87.06)
VLTY	0.000*** (2.62)	0.000*** (2.79)	-0.000*** (-5.25)	-0.000** (-5.26)	0.000*** (10.84)	0.000** (9.39)
SIZE	-0.007*** (-11.21)	-0.007*** (-10.96)	-0.000 (-0.60)	-0.000 (-0.45)	-0.021*** (-21.11)	-0.021*** (-21.01)
INST	-0.013*** (-10.02)	-0.013*** (-10.01)	0.002 ^m (5.49)	0.002*** (5.63)	-0.031*** (-17.37)	-0.030" (-17.69)
COV	0.001** (2.33)	0.001** (2.23)	-0.001*** (-6.28)	-0.001** (-6.42)	0.003*** (9.02)	0.003** (8.66)
ΔEQVOL	-0.001* (-1.91)	-0.001** (-2.02)	0.001 (15.34)	0.001*** (15.30)	-0.014*** (-18.85)	-0.013** (-19.20)
ΔOPVOL	-0.000* (-1.85)	-0.000	0.000 (0.18)	-0.000	0.000*** (7.08)	0.000 (1.14)
O/S	_	-0.000 (-4.49)	=	-0.000 (-0.01)	_	0.000-
Intercept	0.148*** (12.61)	0.146** (12.47)	0.003 ** (2.11)	0.003** (1.96)	0.349*** (21.54)	0.353** (21.54)
R ² (%)	46.477	46.575	58.571	58.660	64.233	64.352

Table 3. Relative Spreads and Illiquidity Regressions

market makers decrease liquidity when adverse selection, as measured by MIA, is high.

shanxi university

Dep. variable:		OIB	
	(1)	(2)	(3)
MIA	0.015** (27.45)	0.007*** (10.85)	0.006** (10.47)
$MIA \times D(O/S < M)$	_	0.014***	0.014***
D(O/S < M)	_	-0.002***	-0.002*** (-5.24)
OIB(-1)	0.128**	0.128-	0.127***
OIB(-2)	0.096**	0.095***	0.095*** (42.34)
OIB(-3)	0.088**	0.087-	0.087***
OIB(-4)	0.085**	0.084***	0.084*** (39.38)
VLTY	-0.001***	0.001-	0.001**
SIZE	-0.007** (-26.25)	-0.000	-0.000* (-1.92)
INST	-0.001**	-0.001-	-0.001
COV	-0.004 ^{**} (-19.88)	-0.007***	-0.007***
ΔEQVOL	0.001	-0.004-	-0.004**
ΔOPVOL	-0.000**	-0.001"	-0.001*
O/S	_	_	0.000
Intercept	0.198**	0.198**	0.198***
R ² (%)	13.515	13.895	14.093

- -

- -

_

Table 4. Absolute Order Imbalance Regressions

-

Predicting Volatility with MIA

Our next tests are based on the hypothesis that informed trade is more prevalent before periods of abnormal volatility.

(1)some traders, through the use of prediction models or privileged access to the information itself, may have foreknowledge of pending news, resulting in an increase in the number of informed traders and abnormally high future volatility when the news becomes public.

(2)controlling for the number of informed traders, higher volatility news presents a more profitable trading opportunity and will therefore increase the size of informed traders'orders.

(3) informed traders themselves create an order imbalance cascade that causes the subsequent volatility in stock prices.

All of these forces suggest that next-period returns will be more volatile when MIA is high, both when abnormal volume is concentrated in options and when it is concentrated in stocks.

Table 5. Predicting Volatility Using MIA

	Panel A: Regressions of future volatility on MIA								
Dep. variable:	RETSQ(1) (1)	RETSQ(2) (2)	RETSQ(3) (3)	RETSQ(4) (4)	RETSQ(5) (5)				
MIA	1.307*** (5.04)	0.815** (3.18)	0.994** (3.38)	1.023** (3.63)	0.671** (2.40)				
RETSQ	0.132*** (17.64)	0.083 (9.26)	0.079*** (11.01)	0.051*** (8.47)	0.062** (6.83)				
RETSQ(-1)	0.070*** (9.11)	0.073*** (10.71)	0.052*** (9.00)	0.060** (7.13)	0.067** (7.21)				
RETSQ(-2)	0.062*** (10.47)	0.055-	0.065-	0.074*** (7.73)	0.061** (7.59)				
RETSQ(-3)	0.047*** (9.38)	0.064*** (7.54)	0.068** (7.28)	0.067*** (7.97)	0.044*** (7.66)				
RETSQ(-4)	0.062*** (8.14)	0.067***	0.065*** (8.81)	0.042*** (6.45)	0.057** (10.26)				
VLTY	0.483*** (22.53)	0.501-	0.513-	0.538*** (22.18)	0.545**				
SIZE	-0.928*** (-11.23)	-0.977	-0.991- (-12.66)	-1.011** (-12.66)	-1.022** (-12.43)				
INST	-1.291*** (-4.05)	-1.228 ^m (-3.59)	-1.297 ^m (-3.57)	-1.387*** (-3.86)	-1.382"" (-3.87)				
COV	0.327*** (4.15)	0.263*** (3.36)	0.246*** (3.08)	0.221** (2.69)	0.211** (2.53)				
ΔEQVOL	1.730*** (9.68)	0.798-	0.496*** (4.60)	0.573** (4.81)	0.299** (2.64)				
DOPVOL	-0.021** (-2.33)	-0.031-	-0.029*** (-2.96)	-0.044*** (-3.52)	-0.041*** (-3.58)				
O/S	0.057***	0.060***	0.070**	0.061*** (7.24)	0.065**				
Intercept	14.609*** (11.08)	16.229 ~ (12.22)	16.565 (12.27)	17.155*** (12.39)	17.526** (12.41)				
R ² (%)	11.192	10.023	9.624	9.405	9.296				

one potential concern is that these results reflect a mechanical correlation between option volume and expectations of volatility based on public information.

- we disaggregate MIA and show that it predicts volatility both when O/S increases (i.e., O/S > M) and when it decreases (i.e., O/S < M).
- we also control for option-implied volatility as a summary measure of expected volatility based on public information.

Table 5. (Continued)

	Panel B: R	egressions of future vola	tility on disaggregated M	ſΙΑ	
Volatility measure:	RETSQ(1) (1)	RETSQ(2) (2)	RETSQ(3) (3)	RETSQ(4) (4)	RETSQ(5) (5)
MIA (O/S > M)	1.613** (4.88)	0.696** (2.66)	0.423 (1.30)	0.727** (2.33)	-0.290
MIA (O/S < M)	1.031*** (3.52)	0.714" (2.38)	1.183*** (3.42)	1.169*** (3.51)	1.083** (3.25)
RETSQ	0.131*** (17.45)	0.082*** (9.21)	0.079*** (10.96)	0.050*** (8.24)	0.062** (6.82)
RETSQ(-1)	0.069*** (8.98)	0.073*** (10.67)	0.051*** (8.93)	0.060** (7.09)	0.067*** (7.22)
RETSQ(-2)	0.062*** (10.41)	0.054*** (10.14)	0.064*** (7.93)	0.074*** (7.71)	0.060** (7.61)
RETSQ(-3)	0.046*** (9.27)	0.064*** (7.52)	0.068*** (7.26)	0.067*** (7.96)	0.044 ^{**} (7.66)
RETSQ(-4)	0.061*** (8.14)	0.066*** (7.22)	0.065*** (8.81)	0.042*** (6.41)	0.057** (10.24)
VLTY	0.486*** (22.85)	0.502*** (21.84)	0.512*** (21.48)	0.538*** (22.37)	0.543** (22.37)
SIZE	-0.925*** (-11.20)	-0.979*** (-12.80)	-0.995*** (-12.71)	-1.008"* (-12.65)	-1.023** (-12.46)
INST	-1.288 ^{***} (-4.12)	-1.213"* (-3.61)	-1.252*** (-3.55)	-1.346"* (-3.85)	-1.295** (-3.71)
COV	0.324*** (4.21)	0.259*** (3.36)	0.237*** (3.02)	0.214*** (2.64)	0.197* (2.41)
ΔEQVOL	1.747** (9.69)	0.811** (5.75)	0.496*** (4.61)	0.570*** (4.74)	0.282** (2.47)
DOPVOL	-0.032 ^{***} (-3.20)	-0.037*** (-3.47)	-0.028** (-2.54)	-0.042*** (-2.69)	-0.031" (-2.37)
O/S	0.057 (5.64)	0.064*** (6.27)	0.081*** (7.73)	0.067*** (7.80)	0.080** (8.29)
Intercept	14.580*** (11.04)	16.282*** (12.32)	16.646*** (12.32)	17.131** (12.36)	17.593** (12.46)
R ² (%)	11.369	10.186	9.786	9.568	9.453

shanxi university

To assess how much of the information in MIA about future volatility is already reflected in option prices and commonly used proxies for information asymmetry, we repeat our volatility prediction regressions with four additional independent variables.

- option-implied variance, IV
- the firm's relative spread
- Amhiud illiquidity ratio
- absolute order imbalance

Table 6. Incremental Volatility Prediction

Dep. variable:	RETSQ(1)	RETSQ(2)	RETSQ(3)	RETSQ(4)	RETSQ(5)
	(1)	(2)	(3)	(4)	(5)
MIA	1.065***	0.595**	0.781***	0.703***	0.465*
	(4.77)	(2.76)	(2.87)	(3.01)	(1.88)
RS	1.281	0.365	-1.138	-0.349	-0.450
	(1.18)	(0.33)	(-1.23)	(-0.26)	(-0.41)
ILLIQ	-1.808***	-1.498**	-1.181***	-1.599**	-1.119***
	(-4.33)	(-3.59)	(-2.61)	(-4.05)	(-2.61)
OIB	-3.196***	-2.221**	-1.490***	-0.903	-1.828***
	(-4.22)	(-4.55)	(-2.98)	(-1.21)	(-2.81)
O/S	-0.002	-0.003	0.003	0.003	0.004
	(-0.22)	(-0.33)	(0.36)	(0.36)	(0.41)
IV	0.878***	0.901***	0.932***	0.923***	0.857***
	(20.81)	(17.29)	(18.09)	(16.94)	(18.13)
RETSQ(0)	0.087***	0.043***	0.036***	0.021	0.032
	(11.09)	(5.59)	(4.02)	(3.73)	(3.46)
RETSQ(-1)	0.021	0.022***	0.006	0.018**	0.022**
	(3.07)	(3.15)	(1.10)	(2.18)	(2.48)
RETSQ(-2)	0.014**	0.010	0.027***	0.020**	0.011*
	(2.18)	(1.88)	(3.25)	(2.18)	(1.72)
RETSQ(-3)	0.005	0.025**	0.011	0.012	-0.001
	(0.95)	(2.94)	(1.48)	(1.91)	(-0.13)
RETSQ(-4)	0.017~	0.016*	0.010	-0.005	0.006
	(2.23)	(1.93)	(1.64)	(-0.65)	(0.86)
VLTY	0.010	0.010	0.006	0.025	0.067**
	(0.38)	(0.29)	(0.18)	(0.70)	(2.15)
SIZE	0.045	0.060	0.075	0.003	-0.046
	(0.59)	(0.62)	(0.79)	(0.03)	(-0.51)
INST	0.496*	0.669**	0.619	0.671**	0.641**
	(1.80)	(2.26)	(1.90)	(2.15)	(1.97)
COV	0.145	0.074	0.063	0.003	0.033
	(1.94)	(0.92)	(0.78)	(0.04)	(0.40)
AEQVOL	1.215***	0.346**	0.114	0.007	-0.087
	(8.69)	(3.07)	(1.28)	(0.07)	(-0.98)
AOPVOL	-0.000	-0.008	-0.008	-0.016	-0.024**
	(-0.01)	(-0.63)	(-0.83)	(-1.59)	(-2.05)
Intercept	-2.250	-1.891	-2.156	-0.703	0.310
	(-1.69)	(-1.15)	(-1.29)	(-0.45)	(0.20)
R ² (%)	15.145	13.873	13.572	13.282	13.042

Alternative Implementations and Robustness (1)Alternative Estimations of M

- defines M_{j,t} as the average level of a firm's O/S in the week after the firm's most recent earnings announcement under the assumption that the public announcement resolves information asymmetry among investors.
- defines M_{j, t} based on historically-estimated relations between O/S and firm characteristics using the empirical model.(FIA)
- (2)Robustness to Alternative Implementations.
- To address potential persistent cross-sectional differences, we replicates our main tests using panel regressions that include firm and year fixed effects.

Dep var:	Eq. Spr.	Op.Spr.	ILLIQ	OIB	RETSQ(1)
	Panel A: R	egressions	using fitted	MIA ("FIA")
FIA	0.004***	0.001**	0.011**	0.002**	0.719**
	(6.05)	(5.50)	(12.74)	(6.94)	(2.87)
R ²	0.441	0.582	0.642	0.141	0.146
Controls	Yes	Yes	Yes	Yes	Yes
Pa	inel B: Regr	essions witl	h firm and y	ear fixed eff	ects
MIA	0.004***	0.003**	0.019**	0.009***	1.758**
	(8.09)	(24.73)	(11.80)	(38.88)	(9.78)
R ²	0.575	0.622	0.504	0.232	0.070
Controls	Yes	Yes	Yes	Yes	Yes
Pane	lC: Regres	sions exclud	ling options	s expiration	weeks
MIA	0.011***	0.002**	0.028**	0.016**	1.702**
	(8.59)	(6.77)	(6.48)	(22.96)	(5.70)
R^2	0.464	0.587	0.607	0.139	0.112
Controls	Yes	Yes	Yes	Yes	Yes

Table 7. Alternative Implementations and Robustness

MIA as a Conditioning Variable

We examine whether MIA serves as an ex ante conditioning variable that helps distinguish between informed and uninformed sources of price pressure.

(1)we examine the returns of a daily reversal strategy after conditioning on MIA.

(The daily reversal strategy consists of a long position in stocks in the lowest quintile of returns on day t and a short position stocks in the highest quintile)

daily returns reverse more substantially when MIA is low because these returns are more likely to reflect price pressure from uninformed traders.

Table 8. Reversal Strategy Returns Conditioning on MIA

	Pa	nel A: Daily return reve	ersal strategy facto	or loadings		
	INT	MKTRF	SMB	HML	UMD	LIQ
Q1: Low MIA	0.150 (6.08)	0.286 (7.59)	0.086 (2.02)	-0.291 -(7.17)	0.027 (1.00)	0.163 (3.88)
Q2	0.179 (7.38)	0.218 (5.88)	0.104 (2.50)	-0.181 -(4.54)	0.036 (1.34)	0.081 (1.96)
Q3	0.131 (5.45)	0.244 (6.63)	0.054 (1.31)	-0.231 -(5.85)	0.061 (2.28)	0.114 (2.78)
Qi	0.133 (5.56)	0.240 (6.55)	0.111 (2.68)	-0.233 -(5.90)	0.040 (1.49)	0.131 (3.19)
Q5: High MIA	0.065 (2.60)	0.275 (7.20)	0.150 (3.50)	-0.200 -(4.87)	0.017 (0.60)	0.158 (3.71)
High - Low MIA	0.085 (3.37)	0.011 (0.29)	-0.065 -(1.50)	-0.091 -(2.19)	0.011 (0.38)	0.005 (0.12)
	I	Panel B: Daily Fama–Ma	cBeth reversal re	gressions		
	(1)	(2)	(3	3)	(4)	(5)
QRET	-0.035*** (-7.20)	-0.046*** (-7.83)	-0.0 (-6.4	38 ** 6)	-0.044*** (-8.05)	-0.020 (-1.19)
QRET×MIA	_	0.025** (4.23)	0.0 (4.1	24 4)	0.023*** (4.08)	0.019-
MIA	0.008 (0.68)	-0.042** (-2.48)	-0.0 (-2.4	41 * 6)	-0.031** (-2.12)	-0.023 (-1.62)
QRET×EQVOL	_	Ξ	-0.0 (-3.0	00 *** 1)	-0.000"* (-2.70)	-0.000" (-2.67)
EQVOL	_	Ξ	0.0 (1.5	00 7)	0.000 (1.58)	0.000 (1.63)
MOMEN	_	Ξ	-	-	0.000 (0.73)	0.000 (0.75)
SIZE	_	Ξ	-	- 0.004 - (0.97)		0.007 (1.43)
LBM	_	Ξ	-	-	-0.020 (-0.85)	-0.020 (-0.86)
O/S	_	Ξ	-	_		-0.001*** (-2.77)
QRET×SIZE	Ξ	_	-	_		-0.001
Intercept	0.069*** (4.51)	0.089*** (5.49)	0.0 (4.9	0.073*** 0.0 (4.99) (0.3		-0.021 (-0.24)
R ² (%)	1.587	1.796	3.5	48	7.078	7.295

(2) To further examine whether MIA distinguishes informed from uninformed sources of price pressure, we examines the returns to portfolios doublesorted by MIA and impliedvolatility spreads.

(The IV spread strategy consists of long positions in the highest quintile and short positions in the lowest quintile of IV spread)

implied-volatility spreads are more likely to reflect directional price pressure from informed trade when information asymmetry is high.

Table 9. Implied-Volatility-Spread Strategy Returns Condition	oning on MIA
---	--------------

	INT	MKTRF	SMB	HML	UMD	LIQ
		Panel A: Strategy	r factor loadings (full	sample)		
Q1: Low MIA	0.058	0.010	-0.092	-0.141	0.023	0.021
	(3.33)	(0.38)	-(3.10)	-(4.94)	(1.19)	(0.71)
Q2	0.064	0.035	-0.068	-0.079	0.018	0.041
-	(3.72)	(1.32)	-(2.29)	-(2.77)	(0.97)	(1.38)
Q3	0.039	0.008	-0.039	-0.151	-0.010	-0.025
~	(2.25)	(0.30)	-(1.31)	-(5.35)	-(0.53)	-(0.84)
O4	0.080	-0.027	0.001	-0.138	-0.007	-0.008
	(4.86)	-(1.09)	(0.03)	-(5.08)	-(0.36)	-(0.28)
O5: High MIA	0.119	0.044	-0.030	-0.163	-0.015	0.074
2	(7.10)	(1.71)	-(1.03)	-(5.90)	-(0.79)	(2.57)
High - Low MIA	0.062	0.034	0.063	-0.022	-0.038	0.053
	(2.59)	(0.94)	(1.53)	-(0.56)	-(1.43)	(1.30)
		Panel B: Strategy fact	or loadings $(O/S > N$	(subsample)		
Q1: Low MIA	0.048	-0.002	-0.101	-0.122	0.035	-0.002
	(2.02)	-(0.05)	-(2.48)	-(3.14)	(1.35)	-(0.06)
Q2	0.078	0.055	-0.016	-0.081	0.017	0.039
	(3.14)	(1.45)	-(0.38)	-(1.97)	(0.62)	(0.91)
Q3	0.035	0.000	-0.050	-0.155	-0.019	-0.002
~	(1.39)	(0.01)	-(1.15)	-(3.73)	-(0.68)	-(0.05)
Q4	0.122	0.001	0.018	-0.146	-0.033	0.033
	(5.05)	(0.02)	(0.44)	-(3.65)	-(1.23)	(0.80)
O5: High MIA	0.150	-0.012	-0.125	-0.178	-0.035	-0.022
~ 0	(4.64)	-(0.23)	-(2.24)	-(3.31)	-(0.98)	-(0.40)
High – Low MIA	0.107	-0.013	-0.027	-0.072	-0.076	-0.025
	(2.65)	-(0.22)	-(0.38)	-(1.07)	-(1.71)	-(0.36)
		Panel C: Strategy fact	or loadings (O/S < N	f subsample)		
Q1: Low MIA	0.063	0.028	-0.055	-0.146	0.008	0.053
	(2.51)	(0.73)	-(1.28)	-(3.52)	(0.30)	(1.22)
Q2	0.052	-0.007	-0.061	-0.088	0.028	0.025
~	(2.15)	-(0.20)	-(1.47)	-(2.21)	(1.05)	(0.62)
Q3	0.036	0.011	0.006	-0.156	-0.008	-0.039
	(1.39)	(0.28)	(0.14)	-(3.65)	-(0.29)	-(0.88)
Q4	0.053	-0.068	-0.024	-0.073	0.024	-0.044
	(2.17)	-(1.83)	-(0.58)	-(1.84)	(0.88)	-(1.07)
O5: High MIA	0.115	0.024	-0.002	-0.094	-0.002	0.042
2	(5.21)	(0.70)	-(0.06)	-(2.59)	-(0.09)	(1.12)
High - Low MIA	0.050	-0.003	0.052	0.053	-0.009	-0.011
	(1.49)	-(0.06)	(0.91)	(0.96)	-(0.24)	-(0.18)

5. Additional Analyses

(1) Information Asymmetry Around Information Events

We predict that information asymmetry rises prior to information events and subsequently declines as private information is announced and becomes public.

- Earnings announcements
- 8-K filings

MIA detects informed trade even in cases in which the event is not scheduled or publicly disclosed in advance.

Figure 3. (Color online) Changes in MIA Surrounding Information Events

(2)Comparing MIA and PIN

To compare the effectiveness of PIN and MIA, Table 10 reports cross-sectional means of quarterly MIA and PIN before and after exogenous terminations of analyst coverage. We predict that MIA should rise along with information asymmetry following an exogenous reduction in analyst coverage.

- uninformed traders become less active because they rely on analysts to process information.
- ➤ informed traders' information advantages increases with the reduction in analyst coverage,resulting in more informed trading volume.

Both possibilities result in an increase in the fraction of traders with private information, and so an effective proxy for information asymmetry should increase following these exogenous shocks to analyst coverage.

	Terminations		Matched controls		
	Before	After	Before	After	
MIA	0.451	0.521	0.461	0.499	
O/S	6.201	5.765	6.744	5.841	
PIN	0.109	0.116	0.113	0.120	

Table 10. Coverage Terminations and Information Asymmetry

6. Conclusion

- ➢ MIA is positively associated with bid-ask spreads, price impact, and order imbalances, offers significant predictive power for future volatility, and distinguishes between informed and uninformed sources of price pressure.
- MIA rises before firms' earnings announcements and 8-K filing dates, and falls immediately afterward.
- MIA detects increases in information asymmetry driven by exogenous reductions in analyst coverage.

THANKS!

