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Abstract

The link between beta predictability and the price of risk. 

An investor who desires exposure to a 

certain risk factor needs to predict what 

next period’s beta will be. 

use a model to show that an ambiguity averse agent’s demand is lower 

when betas are hard to predict, leading to a reduction in risk premiums.

test the implications for downside 

betas and VIX betas.

find that they have economically 

and statistically small prices of risk



1.Introduction
➢ In Section 2 we develop our theoretical model to illustrate how 

parameter uncertainty around asset correlations affects asset prices.

➢ In Section 3 we find the best possible prediction between beta 

prediction models, and in Section 4 we compare risk premium 

estimates using expost realized beta specifications vis–vis premium 

estimates using predicted or lagged betas. 

➢ In Section 5 we explain that beta uncertainty issues are not confined 

to the realm of relative downside and VIX betas, and in Section 6 we 

explain why risk premium estimates using ex-post realized betas may 

contain an upward bias. 

➢ In Section 7 we optimize the portfolio of an investor with Constant 

Relative Risk Aversion (CRRA) preferences, taking into account beta 

uncertainty, and measure the decrease in hedge portfolio demand 

induced by lack of predictability, and Section 8 concludes.



2. Ambiguity aversion and correlation uncertainty

➢ This section discusses a simple model relating beta predictability 

to hedging demands and prices of risk. Our model consists of two 

ambiguity-averse agents optimizing their utility.

➢ We create hedging demand by exposing one agent to an 

exogenous shock, while the other agent is not affected. Both 

agents can invest in the market and a zero net supply risky asset 

with payoffs that are possibly correlated to the exogenous shock.

➢ The degree to which the risky asset hedges the exogenous shock 

remains uncertain.

➢ An agent’s ability to forecast risk exposures affects their hedging 

demands and therefore the price of the risky asset.



2.1. Market model with a zero net supply portfolio

2.1.1 Assets

• Three sources of risk: (the market portfolio M, hedging asset H, and 

exogenous risk, Q), M and H are traded. The market asset must be 

in positive net supply, the hedging portfolio is in zero net supply.

• Excess returns of the three risky assets

,                                          

, where 𝜌 is the correlation coefficient between Q and H.

• The total market capitalization must be equal to the total traded 

wealth in the economy, 𝑊𝑇 , which we normalize to one.

• The expected returns of M and H will be endogenous to the model, 

while the expected return of Q is given.
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2.1.2  Agents

In this model, we have two types of agents, j ∈ { A, B }, with risk aversion 𝛾𝑗
where agent A is not exposed to exogenous risks, while agent B has a positive 

exposure to the exogenous risk.

Agents of type A and B detain all of the wealth in the economy and each own a 

relative share of wealth 𝑊𝑗. They must invest a portion of their wealth in each of 

the two traded assets: the market asset M and the hedge asset H. 

Excess portfolio returns (2)

Expected return                                                                                           (3)

Variance                                                                                                       (4)

Confidence interval
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: 投资于每种资产的财富部分

𝜇𝑀和𝜇𝐻：均衡状态下以什么价格交易
In our framework, a higher η can either represent more ambiguity aversion or a 

higher standard error of the estimate. Keeping ambiguity aversion constant,

higher η also means higher correlation uncertainty. 
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In our model, each agent wants to maximize next period’s expected utility, 

which we model using a mean-variance utility function.

Objective function for agent A: 

(5)

For agent B: 

 
( ) ( )( )2 2

2 2

,

m
2

ax
A A
M H

A A A A A

M M M H M M
w w

A

H HU w w w w   


+−= +



2.1.3 Equilibrium conditions

➢ Market equilibrium is achieved once both agents optimally allocate to 

the available assets given their current prices, 𝜇𝑀and 𝜇𝐻, which are 

endogenously determined, and the remaining exogenous parameters. 

➢ Proposition 1 . If there is no correlation uncertainty, ො𝜌 = 𝜌 and 𝜂 = 0 , 

then the optimal partial equilibrium demands for agents A and B are 

given by

In equilibrium, markets for both tradable assets have to clear. This means 

that total wealth allocated to the market portfolio has to add up to one and 

total wealth invested in the hedge asset should sum to zero. 



➢ Proposition 2 . If there is no correlation uncertainty, ො𝜌 = 𝜌，and 𝜂 = 0 , 

then the market premium and hedge asset premiums are given by

ҧ𝛾 : wealth-weighted harmonic average of both agents’ risk aversion 

coefficients.

The key component of the risk premium is the correlation between the 

hedge asset and the exogenous risk. In absolute terms, higher 

correlations result in higher premiums, while the sign of the premium 

depends on whether the correlation is negative or positive.

➢ Proposition 3 . Under ambiguity aversion, agent B’s partial equilibrium 

demand for the hedge asset and the optimal correlation ( 𝜌∗ ) is given 

by 



Agent A’s partial equilibriums demands and agent B’s demand for the 

market remain unchanged. Agent B’s hedging demand shrinks toward zero 

if correlation uncertainty, η , is high. 

➢ Proposition 4 . We insert optimal demands for both agents into the 

market-clearing conditions in Eq. (10) , and obtain the following 

equilibrium returns for the hedge asset.



𝜂 = 0.3
𝛾𝐴=4, 𝛾𝐵=4

𝜎𝐻 = 0.2
𝜎𝑄 = 0.2

𝑤𝑄=0.5

𝑤𝐴=0.5, 𝑤𝐵=0.5







3.Predicting betas

➢ In this section we focus on relative downside betas and VIX betas. More 

specifically, we forecast ex-post realized betas — which are often used 

in asset pricing tests but unobservable for investors when forming 

hedging demands.

➢ Use daily data over the course of a year to estimate a stock’s yearly beta 

at each point in time, we use daily return data because a higher 

sampling frequency should improve the beta estimates.

➢ When estimating betas, stocks with more than five missing daily returns 

observations over the course of the estimation window are removed from 

our sample. 



3.1 Relative downside and VIX betas

➢ Using one lag for CAPM betas to mitigate non synchronous trading 

concerns

➢ Standard downside betas are calculated as the market beta . 

𝛽𝐷𝑅(relative downside beta)=standard downside beta—market beta

➢ VIX betas (𝛽𝑉𝐼𝑋 ) : regressing stock returns on daily first differences in the 

VIX, a volatility index based on the implied volatility on S&P 500 options

𝑟𝑚：the market return ； 𝑟𝑘 ：a daily change in the volatility index.
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estimate a stock’s market beta using only days for 

which the market had a return below its average 

over the past year



3.2 Predictive regressions

➢ We predict future betas using realized lagged betas and then use firm 

characteristics to improve beta forecasts. 

➢ We run cross-sectional predictive regressions every month and report 

average coefficients with corresponding t-statistics in Table 1

(18)                   

𝛽𝑖,𝑡: the most recently estimated beta (the lagged beta), which uses the past 

12 months of data, and 𝑋𝑖,𝑡 is a vector of predictive variables. 

➢ Co-skewness (CSK): 

𝜇𝑖 and 𝜇𝑚 : the stock’s and the market mean returns,

𝑉𝑎𝑟 𝑟𝑖 and 𝑉𝑎𝑟 𝑟𝑚 : the stock and market variances  over the past 

year using daily data.

➢ Idiosyncratic volatility(IV) : the volatility of the CAPM error terms:

: the market beta of stock 𝑖 estimated over the past year using daily 

data
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Table 1 Predictive beta regressions.





4. Beta predictability and the price of risk

➢ This section serves to quantify reductions in risk premiums induced by 

the practical challenges faced by investors when predicting betas. 

➢ We apply a standard multi factor model specification:

𝛽𝑖,𝑡
𝑀 :  stock’s market beta ; 𝜆𝑚,𝑡 : the price of market risk

𝛽𝑖,𝑡
𝑘 : additional risk factor exposures ; 𝜆𝑘,𝑡: corresponding prices of risk.

Betas are conditional on information observed by the investor at t .

➢ Substantial look-ahead biases may arise lagged or predicted betas 

often differ substantially from ex-post realized ones. Portfolio sorts or 

asset pricing tests using the three different types of betas may lead to 

very different outcomes.

➢ We predict that prices of risk obtained using lagged or predicted betas 

are lower than risk premium estimates using ex-post realized betas.
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4.1 Portfolio sorts





Table 5

Double-sorted portfolios 

CAPM alphas.



Table 5

Double-sorted portfolios 

CAPM alphas.



4.2 Cross-sectional regressions

➢ This section studies the risk premiums associated with ex-ante versus 

realized betas through a Fama-MacBeth analysis.

➢ Prices of risk are estimated using the regression specification below and 

results are reported in Table 6

𝛽𝑖,𝑡
𝑀 and 𝛽𝑖,𝑡

𝑘 represent market, relative downside , and VIX risk exposure.

➢ We test the hypothesis that risk premium estimates are zero (or small) for 

betas that are hard to predict. Hence, we expect low prices of risk for 

predicted and lagged downside and VIX betas. 

➢ Hedging demand decreases when betas are more difficult to predict.

➢ Risk premium estimates are small and mostly insignificant when we take 

into account that an investor cannot observe, but needs to, predict future 

risk exposure.
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Table 6 Cross-sectional regressions.



5. Other risk factors

Table 7 Beta 

predictability and risk 

premiums for other 

risk factors

Result:

Investors who want to 

hedge against Fama-

French risk or changes 

in the investment 

opportunity set face 

similar difficulties as 

investors who want to 

hedge against crashes 

or changes in volatility.

(2.17-0.7)/2.17=67.65%



6. Why are ex-post realized betas priced?

➢ Estimation error in betas induces an upward biases in risk premiums

estimates.

➢ Under the null of the CAPM we have

Betas are not observable but have to be estimated:

𝐵𝑖 : the estimation error for the beta. 

The error teams:

Risk premium estimate

cov𝑐 : cross-sectional covariance.



the missing period ：the average of betas 

estimated over period t − 1 and period t + 1 

The smaller missing period risk premium estimates 

are in line with the estimates produced by predicted 

or lagged betas.



6.1 Simulations

➢ To add further credibility to the bias explanation, we also run a 

simulation exercise, where we simulate 100 panels of returns under 

the null of the CAPM

using realized betas estimated over one year of daily data from our 

sample as the true betas 𝛽𝑖𝑡.
Error terms(𝜖𝑖𝑡) independently from a normal distribution with mean zero 

and standard deviation 𝜎𝜖 = 0.5 .

Cross-sectional correlation between estimated betas መ𝛽𝑖𝑡 = 𝛽𝑖𝑡 + 𝐵𝑖𝑡
and time series error terms (   ) is created as follows

𝑣𝑖 is drawn from a normal distribution with mean zero and standard 

deviation 𝜎𝑣 = 0.5 . 



average risk premium estimates

time series averages of intercepts

These findings corroborate the importance 

of incorporating period t in the estimation of 

betas and illustrate that risk premium 

estimates can be biased even under

mild conditions.



7. Hedge portfolios from the investor’s perspective

Our theoretical setting conjectures that higher beta uncertainty should 

lead to lower partial equilibrium demands for hedge assets.

A representative investor maximizes expected utility of terminal wealth by 

allocating between the market portfolio and a long-short (hedge) portfolio

E and H refer to returns and weights for the equity market portfolio and 

the hedge portfolio, respectively.

We use the Generalized Method of Moments (GMM) to estimate the 

optimal unconditional weights.

We derive the following moment conditions:

and use GMM to estimate weights satisfying these moment conditions. 



We cannot rule out that the relative downside beta 

premiums constitute compensations for correlated 

risk factors or characteristics.



8. Conclusion

➢ Investors are less willing to use an asset for hedging purposes if it is 

uncertain how well the asset hedges in the future . Risk exposure is 

indeed difficult to predict for downside risk and volatility risk. 

➢ Lagged betas are only mildly (and some times negatively) correlated 

with future betas. Moreover, downside and volatility risk seems closely 

related to idiosyncratic volatility and firm size.

➢ Portfolios sorted on lagged or predicted betas earn significantly lower 

premiums and have ex-post realized exposures close to zero.

➢ Risk premiums also decline substantially after controlling for 

idiosyncratic volatility and firm size.

➢ We run a portfolio optimization for a CRRA agent who allocates wealth 

between the market and a hedge portfolio in zero net supply. 

Representative agents allocate less wealth to portfolios formed using 

investable (lagged or predicted) betas vis-vis non-investable ex-post 

realized betas. 
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