

Khaled Obaid

Assistant Professor in Finance, Accounting and Finance Department, California State University–East Bay

• Education:

PhD, Finance, University of Missouri, 2019 MS, Accountancy, Wake Forest University, 2014 BS, Finance, Wake Forest University, 2012

• Research Interests:

empirical asset pricing, behavioral finance, mutual funds, and big data

• Publications:

Obaid, K., and Pukthuanthong, K., 2021, "Informativeness of mutual fund advertisements: Does advertising communicate fund quality to investors?", Financial Management 50(1), 203–236. doi.org/10.1111/fima.12323

Kuntara Pukthuanthong

Professor of Finance and the Robert J. Trulaske, Jr. Professor of Finance at the Robert J. Trulaske, Sr. College of Business, University of Missouri.

- Education:
 - PhD, Finance, University of California;
 - MBA, Finance, Washington University;
 - BA, Economics, Chulalongkorn University
- Research Interests:
 - international finance and asset pricing
- Publications:

Obaid, K., and Pukthuanthong, K., 2021, "Informativeness of mutual fund advertisements: Does advertising communicate fund quality to investors?", Financial Management 50(1), 203–236. doi.org/10.1111/fima.12323

Empirical Tests of Asset Pricing Models with Individual Assets: Resolving the Errors-in-Variables Bias in Risk, forthcoming Journal of Financial Economics.

出日

Analysts Slash, Estimates as Arus Rip rough omy 析师下调CDP预期 (新冠病 = OI, OF 编号: 20200724090915505080 上传者: totallypic

A picture is worth a thousand words: Measuring investor sentiment by combining machine learning and photos from news

JFE2022.04 主讲人:王 航

1. 主要研究内容

(1) 构建图片悲观指数与文本悲观指数的技术细节

数据选取:

《华尔街日报》2008—2020年涵盖商业、经济、市场、政治及观点五个部分的14余万篇 文章中的图片、标题及摘要。

模型选取:

卷积神经网络技术(Convolutional Neural Networks)中的Google Inception(v3)模型 变量构建:

图片悲观指数 (PhotoPes): 每天新闻图片中被模型分为悲观情绪组的比例

文本悲观指数(TextPes):通过文本分析方法对新闻标题与摘要的悲观情绪进行评估得到

(2) 图片悲观指数 (PhotoPes) 预测金融市场活动的能力 收益率逆转:

图片悲观指数上升一个标准差将导致次日美国股指与交易型开放式指数基金下降4.2个基点,在此后第二天与第五天出现共计9.8到10.9个基点的回升。

市场交易量:

纽交所交易量在图片悲观指数波动时增加,表明图片悲观指数影响投资者情绪而非交易 成本的增加

套利限制对图片悲观指数的影响幅度:

将资产组合根据特质波动率(Idiosyncratic Volatility)与公司规模进行分类。异质性分析表明图片悲观指数对金融市场回报的影响幅度在资产组合具有更高特质波动率或公司规模更小时更大,表明图片悲观指数对难以套利的资产组合有更大影响。

(3) 新闻图片中提取投资者情绪信息的优势

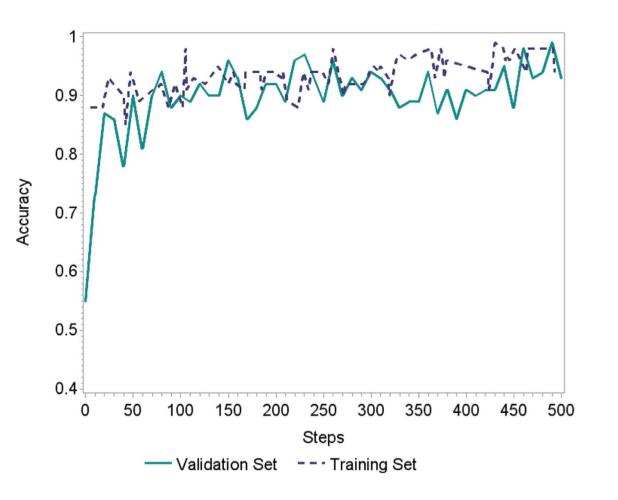
图片在传达恐慌情绪时较文本更为有效:

对本文悲观情绪进行分析(收益逆转)

图片悲观指数影响金融市场回报的系数在恐慌时期约是平时的2.8倍,而文本悲观指数在恐慌时期的系数与平时类似

图片与文本悲观情绪存在相互替代的作用:

(4) 稳健性分析


2. Data

(1) Photo classification

- For this study, we are interested in a model that is able to predict sentiment that a photo is likely to elicit from investors. We build a photo classification model based on Google Inception (v3).
- We start with a pretrained Google Inception (v3) model and use transfer learning to fine-tune the model for our specific application.
- The output we get from the fine-tuned model is one of two probabilities: the probability that photos have positive sentiment and the probability that photos have negative sentiment.
- To perform transfer learning, we need a training set that consists of photos labeled by sentiment. We use the DeepSent data set for training. For increased reliability, we use photos in which all five MTurk survey participants agree on the photo's sentiment. This restriction reduces the training sample to 882 photos.
- The model is trained using a learning rate of 0.01 and 500 learning steps. We set the train batch size to 100 photos. We reserve 10% of the training photos for the validation sample, and 20% for the test sample (photos are randomly assigned into these sets).

- We achieve 87.1% test accuracy.
- To better test the performance of our model, we also calculate recall (86.2%), precision (94.3%), and F1 (90.1%).
- The model trained with the DeepSent training set might not be able to accurately classify professional photos.
- To address this concern, we randomly select 100 photos from our WSJ sample and classify each photo (classification is preformed in MTurk by five individuals). We ask these individuals to rate the content of each photo based on sentiment. We pass these photos through the model to get predictions and compare the predictions to the responses we collect from MTurk.

		Actual					
		Positive	Negative				
Prediction	Positive Negative	64 5	19 12				

• Based on the confusion matrix above, we calculate the performance of our model for classifying our sample of professional news photos from the WSJ. The accuracy is 76.0%; recall is 92.8%; precision is 77.1%; and F1 is 84.2%.

(2) The Wall Street Journal sample

- Between September 2008 and September 2020, we collect the headline and the summary of each article, any associated photos, and the time stamps of when the article is published from the following WSJ sections: "Business," "Economy," "Markets," "Politics," and "Opinion."
- We collect a total of 148,823 articles spanning 3048 trading days. We classify these photos by sentiment using the photo classification model we discussed.

(3) Variable construction

• PhotoPes is calculated as the proportion of photos predicted to be negative on a given date. The formula for PhotoPes on day t is:

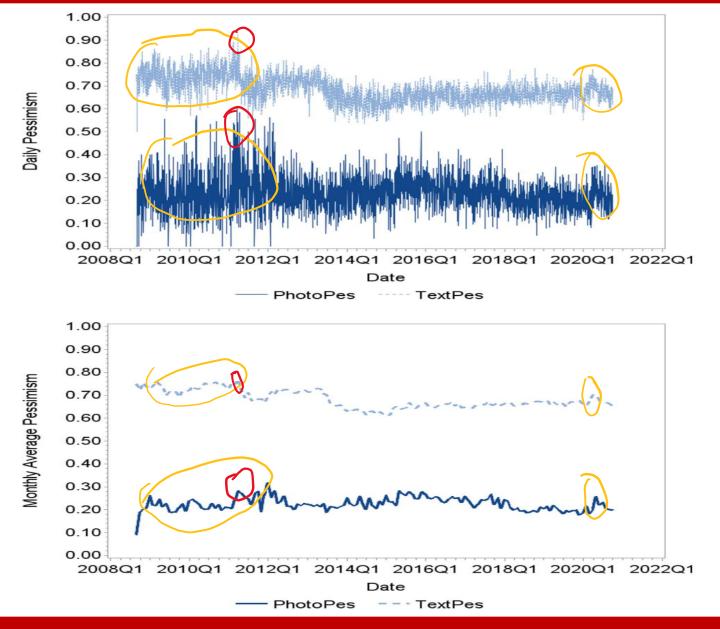
$$PhotoPes_t = \frac{\sum_i Neg_{it}}{n_t}$$
(1)

• We use the sentiment tool in Stanford's CoreNLP software to evaluate the pessimism in each sentence and take the average pessimism score across all sentences in the text as the pessimism score for the article, TextNeg. The formula for TextPes is as follows:

$$TextPes_t = \frac{\sum_i TextNeg_{it}}{n_t} \qquad (2)$$

(4) Descriptive statistics

Variable	Ν	Mean	Median	P25	P75	Std dev
PhotoPes	3048	0.228	0.222	0.180	0.270	0.077
TextPes	3048	0.686	0.681	0.646	0.722	0.056


Panel B: Summary statistics of market returns

Ν	Mean	P50	P25	P75	Std dev
3048	0.045	0.081	-0.391	0.586	1.332
3048	0.042	0.070	-0.380	0.570	1.335
3048	0.049	0.070	-0.370	0.580	1.327
3048	0.039	0.060	-0.390	0.550	1.283
3048	0.047	0.070	-0.370	0.550	1.296
	3048 3048 3048 3048	30480.04530480.04230480.04930480.039	30480.0450.08130480.0420.07030480.0490.07030480.0390.060	30480.0450.081-0.39130480.0420.070-0.38030480.0490.070-0.37030480.0390.060-0.390	30480.0450.081-0.3910.58630480.0420.070-0.3800.57030480.0490.070-0.3700.58030480.0390.060-0.3900.550

Panel C: Correlations between sentiment variables

PhotoPes
0.079*** <0.01

3. Results

3.1 News sentiment embedded in photos and text

(1) T	<u></u>					Panel A:	: PhotoPes				
	he	(1)	(2	2)	(3	3)	(4)	(5)
		VWR	ETD _t	SP	X _t	SP	PY_t	IND	U_t	DI	A _t
	Variables	β	t-stat	eta	t-stat	eta	t-stat	β	t-stat	β	<i>t</i> -stat
	$PhotoPes_{t-1}$ $PhotoPes_{t-2}$ $PhotoPes_{t-3}$ $PhotoPes_{t-4}$ $PhotoPes_{t-5}$	-0.042* 0.055** -0.033 0.030 0.057**	-1.837 2.004 -1.324 1.299 2.137	-0.041* 0.051* -0.030 0.024 0.059**	-1.803 1.886 -1.213 1.047 2.228	-0.040* 0.046* -0.030 0.026 0.056**	-1.787 1.726 -1.294 1.143 2.119	-0.046** 0.043* -0.024 0.030 0.057**	-2.182 1.687 -1.053 1.387 2.193	-0.047** 0.038 -0.025 0.033 0.054**	-2.183 1.502 -1.142 1.487 2.103
	Sum t-1 to t-5 Sum t-2 to t-5	0.0	67	0.0	63	0.0	58	0.00	60	0.0	53
		$\chi^{2}(1)$	<i>p</i> -value	$\chi^{2}(1)$	p-value	$\chi^{2}(1)$	<i>p</i> -value	$\chi^{2}(1)$	<i>p</i> -value	$\chi^{2}(1)$	<i>p</i> -value
	$\chi^{2}(1)$ [Sum t-1 to t-5 = 0] $\chi^{2}(1)$ [Sum t-2 to t-5 = 0] Adj. <i>R</i> -squared N	2.272 6.615** 0.033 3044	0.132 0.010	2.081 6.200** 0.038 3044	0.149 0.013	1.700 5.466** 0.029 3044	0.192 0.019	1.979 6.973*** 0.042 3044	0.160 0.008	1.644 6.257** 0.040 3044	0.200 0.012
					Panel	B: Predicted	Likelihood	PhotoPes			
		(1)		(2)	(3)	(4)		(5)
		VWRET	TD _t	<i>SPX</i> _t		SPYt		INDUt		<i></i>	DIA _t
	Variables	β	t-stat	$\overline{\beta}$	<i>t</i> -stat	β	<i>t</i> -stat	β	<i>t</i> -stat	$\overline{\beta}$	t-stat
	PhotoPes _{t-2} PhotoPes _{t-3} PhotoPes _{t-4}	-0.052** 0.039 -0.020 0.019 0.068***	-2.240 1.487 -0.829 0.789 2.596	-0.052** 0.034 -0.017 0.016 0.070***	-2.269 1.345 -0.687 0.676 2.686	-0.051** 0.028 -0.017 0.019 0.067**	-2.228 1.139 -0.716 0.769 2.576	-0.055*** 0.029 -0.011 0.026 0.062**	-2.581 1.255 -0.472 1.120 2.516	-0.056** 0.024 -0.011 0.029 0.060**	-2.569 1.031 -0.485 1.242 2.390
	Sum t-1 to t-5 Sum t-2 to t-5		0.054 0.106		51 03		046 097		051 106		.046 .102
		$\chi^{2}(1)$	p-value	$\chi^{2}(1)$	<i>p</i> -value	$\chi^2(1)$	<i>p</i> -value	$\chi^{2}(1)$	<i>p</i> -value	$\chi^{2}(1)$	<i>p</i> -value
		1.777 7.202***	0.182 0.007	1.646 7.033***	0.200 0.008	1.311 6.24**	0.252 0.012	1.760 8.013***	0.185 0.005	1.412 7.199***	0.235 0.007
	Adj. <i>R</i> -squared N	0.032 3044		0.03 304			0.029 3044		0.042 3044		.040 044

(2) PhotoPes and sentiment embedded in text

The impact of TextPes on market returns.

 $R_t = \beta_1 L5(TextPes_t) + \beta_2 L5(R_t) + \beta_3 L5(R_t^2) + \beta_4 X_t + \varepsilon_t$

	(1)		(2	2)	(3	3)	(4	ł)	(5)	
	VW	RETD _t	SI	SPX _t		Y_t	INE	DU_t	DIAt		
Variables	β	t-stat	β	t-stat	β	t-stat	β	t-stat	β	t-stat	
TextPes _{t-1}	-0.071*	-1.663	-0.083*	-1.904	-0.087**	-1.977	-0.085**	-2.002	-0.086**	-1.998	
$TextPes_{t-2}$	-0.056	-1.466	-0.061	-1.590	-0.065*	-1.661	-0.062*	-1.686	-0.061	-1.628	
TextPes _{t-3}	-0.007	-0.150	0.001	0.018	-0.004	-0.078	0.005	0.108	-0.003	-0.069	
$TextPes_{t-4}$	0.021	0.527	0.017	0.436	0.021	0.540	0.027	0.709	0.029	0.756	
$TextPes_{t-5}$	0.107**	2.280	0.116**	2.448	0.124***	2.612	0.110**	2.408	0.116**	2.521	
Sum t-1 to t-5	-0.	006	-0.010		-0.011		-0.005		-0.0	05	
Sum t-2 to t-5	0.	065	0.0)73	0.0	0.076		0.080		0.081	
	$\chi^2(1)$	<i>p</i> -value	$\chi^{2}(1)$	<i>p</i> -value	$\chi^2(1)$	<i>p</i> -value	$\chi^{2}(1)$	<i>p</i> -value	$\chi^{2}(1)$	<i>p</i> -value	
$\chi^2(1)$ [Sum t-1 to t-5 = 0]	0.054	0.816	0.112	0.738	0.120	0.729	0.041	0.840	0.030	0.862	
$\chi^{2}(1)$ [Sum t-2 to t-5 = 0]	1.697	0.193	2.171	0.141	2.454	0.117	2.812*	0.094	2.931*	0.087	
Adj. R-squared	0.	028	0.0)35	0.0	28	0.0	38	0.0	39	
Ν	30)44	30	44	30	3044		3044		3044	

	(1)	(2	2)	(3	3)	(4	ł)	(!	5)	
	VWR	ETD _t	SP	X_t	SP	Y_t	INE	DU_t	Di	IA _t	
Variables	β	<i>t</i> -stat	β	<i>t</i> -stat	β	t-stat	β	t-stat	β	t-stat	
PhotoPes _{t-1}	-0.052**	-2.359	-0.049**	-2.229	-0.049**	-2.220	-0.054***	-2.600	-0.054***	-2.596	
TextPes _{t-1}	-0.027	-0.816	-0.038	-1.183	-0.041	-1.241	-0.042	-1.390	-0.043	-1.372	
(PhotoPesxTextPes) _{t-1}	0.038*	1.942	0.033*	1.754	0.034*	1.788	0.034*	1.899	0.034*	1.917	
PhotoPes _{t-2}	0.056**	2.090	0.052**	1.980	0.048*	1.817	0.045*	1.801	0.040	1.595	
PhotoPes _{t-3}	-0.027	-1.089	-0.025	-1.012	-0.025	-1.076	-0.020	-0.878	-0.021	-0.949	
PhotoPes _{t-4}	0.032	1.394	0.026	1.125	0.028	1.228	0.031	1.454	0.034	1.581	
PhotoPes _{t-5}	0.051*	1.936	0.053**	2.018	0.049*	1.896	0.051**	2.003	0.049*	1.897	
TextPes _{t-2}	-0.040	-1.162	-0.045	-1.277	-0.042	-1.197	-0.047	-1.444	-0.042	-1.295	
TextPes _{t-3}	-0.024	-0.640	-0.014	-0.387	-0.016	-0.432	-0.003	-0.078	-0.004	-0.119	
TextPes _{t-4}	-0.016	-0.494	-0.019	-0.578	-0.020	-0.629	-0.014	-0.451	-0.021	-0.671	
<i>TextPes</i> _{t-5}	0.090**	2.488	0.093***	2.603	0.095***	2.652	0.083**	2.497	0.089***	2.701	
Sum t-1 to t-5 PhotoPes	0.0	60	0.057		0.051		0.0	53	0.048		
Sum t-2 to t-5 PhotoPes	0.1	12	0.1	0.106		0.100		0.107		0.102	
Sum t-1 to t-5 TextPes	-0.0)17	-0.0)23	-0.024		-0.023		-0.021		
Sum t-2 to t-5 TextPes	0.0	10	0.0	15	0.017		0.0	19	0.0)22	
	$\chi^{2}(1)$	<i>p</i> -value	$\chi^{2}(1)$	<i>p</i> -value	$\chi^{2}(1)$	<i>p</i> -value	$\chi^{2}(1)$	<i>p</i> -value	$\chi^{2}(1)$	<i>p</i> -value	
$\chi^2(1)$ [Sum t-1 to t-5 <i>PhotoPes</i> =0]	1.866	0.172	1.740	0.187	1.376	0.241	1.633	0.201	1.318	0.251	
$\chi^2(1)$ [Sum t-2 to t-5 <i>PhotoPes</i> =0]	6.983***	0.008	6.412**	0.011	5.693**	0.017	7.187***	0.007	6.483**	0.011	
$\chi^2(1)$ [Sum t-1 to t-5 TextPes=0]	0.332	0.565	0.562	0.453	0.629	0.428	0.658	0.417	0.553	0.457	
$\chi^2(1)$ [Sum t-2 to t-5 <i>TextPes</i> =0]	0.050	0.823	0.146	0.702	0.181	0.671	0.262	0.609	0.328	0.567	
Adj. R-squared	0.0	37	0.043		0.0	34	0.0	46	0.044		
N	304		30		30		30		3044		

To test the attention between the effect

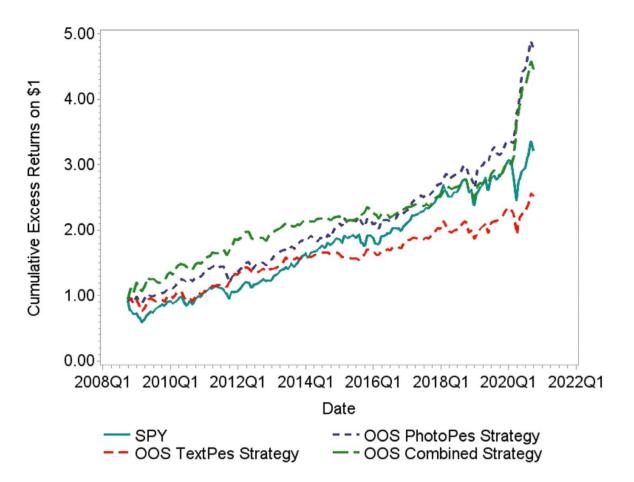
 $R_{t} = (E_{t})[\beta_{1}L5($ $\beta_{5}L5(R_{t}^{2})] + (1)$

			(1	1)				2)				3)		网山在财涯大等
			VWR	ETD _t			SI	PX_t			S	PY _t		M M M M A
		Et	=Salient p	ohoto perio	od	Et	= Salient	photo perio	d	Et	= Salient	photo perio	od	Shanxi University of Finance and Economics
	Variables	β	t-stat	γ	t-stat	β	t-stat	γ	t-stat	β	t-stat	γ	t-stat	ar resource
•	$PhotoPes_{t-1}$	-0.070**	-2.479	-0.015	-0.332	-0.064**	-2.295	-0.016	-0.365	-0.063**	-2.260	-0.015	-0.342	
1	$TextPes_{t-1}$ (PhotoPes × TextPes) _{t-1}	0.047 0.034	0.900 1.524	-0.070* 0.070	-1.883 1.450	0.031 0.029	0.606 1.312	-0.081** 0.065	-2.220 1.362	0.030	0.585 1.403	-0.080** 0.060	-2.137 1.270	
	$PhotoPes_{t-2}$	0.100***	3.282	-0.034	-0.813	0.029	3.316	-0.041	-0.978	0.094***	3.173	-0.044	-1.079	
	PhotoPes _{t-3}	-0.020	-0.659	-0.017	-0.411	-0.017	-0.565	-0.020	-0.498	-0.015	-0.526	-0.019	-0.489	
١.	$PhotoPes_{t-4}$	0.046*	1.710	0.009	0.216	0.042	1.571	-0.001	-0.033	0.042	1.632	0.003	0.066	i to differentiate
).	PhotoPes _{t-5} TextPes _{t-2}	0.047 0.044	1.469 0.684	-0.009 -0.066*	-0.225 -1.795	0.049 0.043	1.538 0.664	-0.004 -0.071*	-0.098 -1.912	0.045 0.051	1.383 0.761	-0.006 -0.072*	-0.166 -1.931	i to unicientiate
-	TextPes _{t-3}	-0.128**	-2.373	0.013	0.316	-0.113**	-2.174	0.022	0.538	-0.114**	-2.146	0.020	0.486	photos are salient:
	TextPes _{t-4}	-0.079	-1.412	0.002	0.057	-0.083	-1.488	-0.001	-0.018	-0.079	-1.488	-0.002	-0.050	photos die suitent.
, -	TextPes _{t-5}	0.182***	3.133	0.059	1.520	0.186***	3.255	0.064	1.638	0.184***	3.135	0.065*	1.694	
(Sum t-1 to t-5 PhotoPes	0.10 0.1			066 051	0.1 0.1		-0.0		0.1 0.1			081 066	$\sum_{t=1}^{n} + \beta_4 L 5(R_t) + $
	Sum t-2 to t-5 PhotoPes Sum t-1 to t-5 TextPes	0.0			051 062	0.1		-0.0 -0.0		0.1			066 069	$-1 \cdot r 4 - (-1) \cdot $
	Sum t-2 to t-5 TextPes	0.0			008	0.0		0.0		0.0			011	$\times TextPes)_{t-1} +$
_		$\chi^{2}(1)$	<i>p</i> -value	$\chi^{2}(1)$	<i>p</i> -value	$\chi^{2}(1)$	<i>p</i> -value	$\chi^{2}(1)$	<i>p</i> -value	$\chi^{2}(1)$	<i>p</i> -value	$\chi^{2}(1)$	p-value	
-	$\chi^2(1)$ [Sum t-1 to t-5 PhotoPes=0]	2.905*	0.088	0.602	0.438	3.224*	0.073	0.958	0.328	2.851*	0.091	0.941	0.332	
	$\chi^2(1)$ [Sum t-2 to t-5 <i>PhotoPes</i> =0]	9.777***	0.002	0.480	0.489	9.696***	0.002	0.823	0.364	8.943***	0.003	0.833	0.362	
	$\chi^2(1)$ [Sum t-1 to t-5 TextPes=0]	0.437	0.509	1.842	0.175	0.405	0.525	2.247	0.134	0.525	0.469	2.443	0.118	
_	$\chi^2(1)$ [Sum t-2 to t-5 <i>TextPes</i> =0]	0.041	0.840	0.028	0.867	0.115	0.734	0.079	0.778	0.187	0.666	0.052	0.820	
	Adj. <i>R</i> -squared		0.0					086				071		
	N		30	44			30)44			اد	044		
					(4)						(5)			
					INDU _t						DIAt			
				$E_t = Salie$	nt photo j	period				E _t = Salier	nt photo p	eriod		
_	Variables	β		t-stat	γ		t-stat	β		t-stat	γ		t-stat	
	$PhotoPes_{t-1}$	-0.06		-2.537		.034	-0.797		66**	-2.505		034	-0.806	
	$TextPes_{t-1}$ (PhotoPes × TextPes) _{t-1}	0.016		0.338 1.471		.079**)60	-2.285 1.358	0.01		0.345 1.536	-0.	075** 56	-2.124 1.253	
	$PhotoPes_{t-2}$	0.08		2.901		.039	-0.999		7***	2.696		044	-1.134	
	$PhotoPes_{t-3}$	-0.01		-0.411		.017	-0.444	-0.0		-0.354	-0.		-0.556	
	PhotoPes _{t-4} PhotoPes _{t-5}	0.04 0.04		1.638 1.320		016 003	0.418 0.080	0.04 0.03		1.603 1.111	0.0 0.0		0.626 0.070	
	TextPes _{t-2}	0.04		0.808		.076**	-2.169	0.06		1.055		079**	-2.188	
	TextPes _{t-3}	-0.08		-1.844)32	0.814	-0.0		-1.801	0.0		0.819	
	TextPes _{t-4} TextPes _{t-5}	-0.06 0.159		-1.308 2.987)02)58	0.046 1.629	-0.0 0.16	73 5***	-1.394 2.929		008 62*	-0.219 1.774	
-	Sum t-1 to t-5 PhotoPes	0.132	0.088		0.0	-0.07		0.10	0.07		0.0	-0.07		
	Sum t-1 to t-5 PhotoPes		0.088			-0.07 -0.03			0.07			-0.07		
	Sum t-1 to t-5 TextPes		0.067	,		-0.06	3		0.08	4		-0.068	8	
_	Sum t-2 to t-5 TextPes		0.051			0.016			0.06	8		0.007	1	
_		$\chi^{2}(1$	1)	<i>p</i> -value	<u>x²</u>	2(1)	p-value	χ²(1)	<i>p</i> -value	χ ²	(1)	p-value	
	$\chi^2(1)$ [Sum t-1 to t-5 <i>PhotoPes</i> =0]	2.25		0.133		772	0.380	1.77		0.183	0.7		0.380	-
	$\chi^{2}(1)$ [Sum t-2 to t-5 <i>PhotoPes</i> =0]	8.23		0.004		279	0.598		8***	0.008	0.2		0.596	
	$\chi^2(1)$ [Sum t-1 to t-5 <i>TextPes</i> =0] $\chi^2(1)$ [Sum t-2 to t-5 <i>TextPes</i> =0]	0.529		0.467 0.561		309 107	0.129 0.744	0.86 0.59		0.354 0.439	2.5 0.0		0.108 0.869	
-		0.550	0		0.096		0.744	0.55				21	0.005	-
	Adj. <i>R</i> -squared N				0.096 3044						0.093 3044			

		(1)					((2)			((3)		
			VWR	RETD _t			S	PX _t			S	PY _t		创山在财任大学
			F _t =Fea	r period			F _t =Fea	ar period			F _t =Fea	ar period		Shanxi University of Finance and Economics
	Variables	β	t-stat	γ	t-stat	β	t-stat	γ	t-stat	β	t-stat	γ	t-stat	6 FNACT
(1) Which	PhotoPes _{t-1} TextPes _{t-1}	-0.103** -0.018	-2.006 -0.291	-0.037* -0.019	-1.893 -0.720	-0.093* -0.031	-1.839 -0.517	-0.036* -0.025	-1.822 -0.956	-0.092* -0.035	-1.793 -0.563	-0.036* -0.026	-1.848 -0.987	r photos?
(4) Which	(PhotoPes \times TextPes) _{t-1}	0.087**	2.063	0.009	0.525	0.079*	1.920	0.005	0.294	0.076*	1.830	0.006	0.334	r photos?
	PhotoPes _{t-2} PhotoPes _{t-3}	0.065 0.018	1.100 0.357	0.050** -0.054**	2.284 -2.423	0.056 0.023	0.956 0.470	0.049** -0.054**	2.272 -2.455	0.053 0.018	0.879 0.374	0.049** -0.056**	2.257 -2.550	•
We attempt to ansy		0.093*	1.914	0.001	0.059	0.077	1.587	0.001	0.059	0.078*	1.646	0.004	0.194	st whether the
L	PhotoPes _{t-5} TextPes _{t-2}	0.080 -0.063	1.431 -0.919	0.027 -0.041	1.214 -1.510	0.082 -0.071	1.482 -1.031	0.029 -0.044*	1.307 -1.649	0.075 -0.059	1.374 -0.862	0.030 -0.046*	1.349 -1.697	
relation between m	TextPes _{t-3}	-0.079	-1.094	0.013	0.517	-0.062	-0.885	0.018	0.721	-0.065	-0.920	0.019	0.756	during periods of
alarrated faar	TextPes _{t-4} TextPes _{t-5}	-0.062 0.134*	-0.937 1.916	0.007 0.061**	0.263 2.122	-0.069 0.138**	-1.046 2.006	0.006 0.062**	0.235 2.161	-0.066 0.138**	-1.022 2.025	0.007 0.061**	0.267 2.150	
elevated fear.	Sum t-1 to t-5 PhotoPes	0.15	53	-0.	013	0.	145		011	0.1	32	-0.0	009	-
	Sum t-2 to t-5 PhotoPes	0.25			024		238		025		24)27	
To examine how the	Sum t-1 to t-5 <i>TextPes</i> Sum t-2 to t-5 <i>TextPes</i>	-0.08 -0.07)21)40		095 064		017 042		087 052)15)41	tes to market
		$\chi^{2}(1)$	p-value	$\chi^{2}(1)$	<i>p</i> -value	$\chi^{2}(1)$	<i>p</i> -value	$\chi^{2}(1)$	<i>p</i> -value	$\chi^{2}(1)$	<i>p</i> -value	$\chi^{2}(1)$	<i>p</i> -value	
returns by fear leve	$\chi^2(1)$ [Sum t-1 to t-5 <i>PhotoPes</i> =0]	2.259	0.133	0.104	0.747	2.033	0.154	0.065	0.799	1.724	0.189	0.048	0.827	-
	$\chi^2(1)$ [Sum t-2 to t-5 <i>PhotoPes</i> =0]		0.008	0.452	0.502	6.283**	0.012	0.496	0.481	5.629**	0.018	0.567	0.451	
$R_t = (F_t)[\beta_1 L5($	$\chi^{2}(1)$ [Sum t-1 to t-5 <i>TextPes</i> =0] $\chi^{2}(1)$ [Sum t-2 to t-5 <i>TextPes</i> =0]	1.306 0.665	0.253 0.415	0.618 1.307	0.432 0.253	1.562 0.580	0.211 0.446	0.406 1.438	0.524 0.231	1.332 0.372	0.249 0.542	0.360 1.432	0.548 0.231	$\frac{1}{TextPes} + \beta_4 L5(R_t) + \frac{1}{TextPes} $
$\beta_5 L5(R_t^2)$] + (1)	Adj. R-squared			046				.053				044		$Toyt Pos \qquad \perp$
$p_{5LS}(n_t)] + (1)$	Ν		30	944			3	044			3	044		$Textres J_{t-1} +$
					(4)						(5)			
					INDUt						DIAt			
					ear period					-	ear period	1		
	Variables	β	4 * *	t-stat	γ	40**	t-stat	β	02**	<i>t</i> -stat	γ	10**	<i>t</i> -stat	-
	PhotoPes _{t-1} TextPes _{t-1}	-0.10		-2.102 -0.563	-0.0	43** 28	-2.252 -1.134	-0.1	02** 30	-2.090 -0.505	-0.0)43**)27	-2.260 -1.099	
	$(PhotoPes \times TextPes)_{t-1}$	0.084	**	2.145	0.00	13	0.215	0.03	33**	2.107	0.0	03	0.217	
	PhotoPes _{t-2} PhotoPes _{t-3}	0.039 0.026		0.701 0.555	0.05 -0.0		2.410 -2.368	0.02		0.511 0.487		51**)50**	2.473 -2.424	
	PhotoPes _{t-4}	0.070)	1.541	0.01	3	0.622	0.0	74	1.626	0.0	15	0.733	
	PhotoPes _{t-5} TextPes _{t-2}	0.071 -0.07		1.322 -1.245	0.03 -0.0-		1.624 -1.682	0.0 -0.0		1.255 -1.118	0.0 -0.0		1.614 -1.637	
	TextPes _{t-3}	-0.04	7	-0.714	0.02	:7	1.101	-0.0	48	-0.728	0.02	25	1.050	
	TextPes _{t-4} TextPes _{t-5}	-0.05 0.127		-0.815 2.017	0.00 0.05		0.186 1.913	-0.0 0.13		-0.978 2.185	0.0 0.0	02 54**	0.067 1.995	
	Sum t-1 to t-5 PhotoPes		0.105			0.005			0.091			0.006		-
	Sum t-2 to t-5 PhotoPes		0.206			0.048	5		0.193			0.049)	
	Sum t-1 to t-5 <i>TextPes</i> Sum t-2 to t-5 <i>TextPes</i>		-0.080 -0.049			0.011 0.039			-0.076 -0.046			0.012 0.039		
		$\chi^2(1)$		<i>p</i> -value	χ²(<i>p</i> -value	χ ²		<i>p</i> -value	χ^2		<i>p</i> -value	-
	$\chi^2(1)$ [Sum t-1 to t-5 PhotoPes=0]	1.198		0.274	0.01		0.891	0.9		0.338	0.0		0.850	-
	$\chi^2(1)$ [Sum t-2 to t-5 <i>PhotoPes</i> =0]	5.23*	*	0.022	1.90	5	0.168	4.5	33**	0.032	2.0	65	0.151	
	$\chi^{2}(1)$ [Sum t-1 to t-5 <i>TextPes</i> =0] $\chi^{2}(1)$ [Sum t-2 to t-5 <i>TextPes</i> =0]	1.307 0.396		0.253 0.529	0.16 1.35		0.681 0.245	1.08 0.30		0.297 0.578	0.16 1.30		0.681 0.253	
	Adj. <i>R</i> -squared	0.000	-		0.058	-	10	0.0			0.058			
	N				3044						3044			

(5) Applications

- The first strategy is based on the pessimism embedded in news photos: following days in which PhotoPes \perp is above its historical mean (expanding), we invest in the SPY at the market close of day t + 3 and sell on the market close two days later (t+5).
- The second strategy is based on pessimism embedded in text: following days in which TextPes \perp is above its historical mean (expanding), we invest in the SPY at the market close of day t + 3 and sell on the market close two days later (t + 5).
- The third strategy involves pessimism from both text and photos: following days in which PhotoPes \perp and TextPes \perp are above their historical means, we invest in the SPY at the market close of day t + 3 and sell on the market close two days later (t + 5).



Panel A: Summary statistics of trading strategies

Strategy	Ν	Mean	t-stat	Std dev	SR
PhotoPes	1992	0.058	3.251	1.119	0.052
TextPes	1891	0.037	2.085	1.166	0.032
Combined	1221	0.054	3.547	0.980	0.055
Index	3034	0.047	2.246	1.325	0.036

Panel B: Time series regression

	(1)	(2)
	Combined	$strategy_t$	PhotoPess	$strategy_t$
Variables	β	t-stat	β	t-stat
Alpha Mkt_Rf _t SMB _t HML _t UMD _t ST_Rev _t	0.021* 51.0*** -1.830 -15.6*** -4.947* 6.754*	1.742 13.347 -0.317 -3.517 -1.743 1.708	0.014 69.4*** -6.612 -13.9*** -5.489** 3.252	1.302 22.912 -1.418 -3.799 -2.121 1.002
Adj. <i>R</i> -squared N	0.5 30		0.7 303	

3. Results3.2 Validation of PhotoPes

(1) Limits to arbitrage

To test whether PhotoPes relates to stock returns differently depending on limits to arbitrage, we run the following regression:

$R_t = \beta_1 L5(PhotoPes_t) + \beta_2 L5(R_t) + \beta_3 L5(R_t^2) + \beta_4 X_t + \varepsilon_t$ (7)

where R t denotes the value-weighted daily returns on the highest and lowest quintile portfolios and the spread between the two portfolios (High-low) sorted on idiosyncratic volatility and size.

		Panel A: V	N Idvol (CAPM) _t					
	(1)	(2	2)	(3)		
	Hig	;h	Low High-			low		
Variables	β	<i>t</i> -stat	β	<i>t</i> -stat	β	t-stat		
PhotoPes _{t-1}	-0.071**	-2.182	-0.035*	-1.852	-0.040**	-1.986		
PhotoPest-2	0.107***	2.833	0.042*	1.902	0.061***	2.810		
PhotoPest-3	-0.044	-1.241	-0.030	-1.481	-0.008	-0.381		
PhotoPes _{t-4}	0.061*	1.745	0.029	1.518	0.028	1.292		
PhotoPes _{t-5}	0.064*	1.778	0.047**	2.043	0.019	0.867		
Sum t-1 to t-5	0.1	17	0.0	53	0.00	50		
Sum t-2 to t-5	0.18	38	0.0	88	0.10	00		
	$\chi^{2}(1)$	p-value	$\chi^{2}(1)$	<i>p</i> -value	$\chi^2(1)$	p-value		
$\chi^2(1)[\text{Sum t-1 to t-5} = 0]$	3.431*	0.064	2.054	0.152	2.454	0.117		
$\chi^2(1)[\text{Sum t-2 to t-5} = 0]$	9.441***	0.002	6.304**	0.012	7.121***	0.008		
Adj. R-squared	0.02	26	0.0	0.030		0.028		
N	304	14	304	44	304	14		
		Panel B: VW	Idvol (FF+UMD) _t					
	(1)	(2	2)	(3	3)		
	Hig	şh	Lo	ow.	High-low			
Variables	β	t-stat	β	<i>t</i> -stat	β	t-stat		
PhotoPes _{t-1}	-0.066**	-2.073	-0.037*	-1.828	-0.035*	-1.854		
PhotoPes _{t-2}	0.102***	2.759	0.045*	1.942	0.052**	2.512		
PhotoPest-3	-0.049	-1.387	-0.027	-1.300	-0.014	-0.722		
PhotoPest-4	0.063*	1.871	0.032	1.633	0.028	1.344		
PhotoPes _{t-5}	0.062*	1.791	0.049**	2.051	0.015	0.736		
Sum t-1 to t-5	0.1	12	0.0	062	0.0	46		
Sum t-2 to t-5	0.17	78	0.0)99	0.0	81		

p-value

0.212

0.023

0.027 3044

50-	1-1	50	1-1	
	Panel B: VW	Idvol (FF+UMD) _t		
(1)	(2	2)	
Hig	;h	La	w	
β	t-stat	β	<i>t</i> -stat	β
-0.066**	-2.073	-0.037*	-1.828	-0.035*
0.102***	2.759	0.045*	1.942	0.052**
-0.049	-1.387	-0.027	-1.300	-0.014
0.063*	1.871	0.032	1.633	0.028
0.062*	1.791	0.049**	2.051	0.015
0.1	12	0.0	062	
0.17	78	0.0	99	
χ ² (1)	p-value	$\chi^{2}(1)$	<i>p</i> -value	$\chi^{2}(1)$
3.412*	0.065	2.691	0.101	1.560
9.026***	0.003	7.362***	0.007	5.133**
	$(1) \\ (1) $	$\begin{tabular}{ c c c c c } \hline & (1) & & & & \\ \hline & & & & & & \\ \hline & & & & & &$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c } \hline Panel B: VW Idvol (FF+UMD)_t \\ \hline \\ $

Adj. *R*-squared N

_

9.026***	0.003	7.362***	0.007	5.133**
0.0	28	0.0	32	
304	44	304	44	
	Panel	C: VW size _t		

	(1	<i>i</i>)	(2)	1)	((3)
	Lar	rge	Small		Large	e-small
Variables	β	t-stat	β	<i>t</i> -stat	β	t-stat
PhotoPes _{t-1}	-0.041*	-1.825	-0.073**	-2.452	0.033**	1.984
PhotoPest-2	0.046*	1.776	0.063*	1.914	-0.011	-0.704
PhotoPest-3	-0.028	-1.163	-0.026	-0.810	-0.005	-0.296
PhotoPest-4	0.025	1.110	0.023	0.779	0.000	0.026
PhotoPes _{t-5}	0.055**	2.080	0.075**	2.325	-0.016	-1.088
Sum t-1 to t-5	0.0	157	0.06	62	0	.001
Sum t-2 to t-5	0.0	/98	0.13	35	-0	.032
	$\chi^{2}(1)$	p-value	$\chi^{2}(1)$	<i>p</i> -value	$\chi^{2}(1)$	<i>p</i> -value
$\chi^2(1)$ [Sum t-1 to t-5 = 0]	1.805	0.179	1.311	0.252	0.001	0.970
$\chi^2(1)$ [Sum t-2 to t-5 = 0]	5.796**	0.016	6.648***	0.010	1.482	0.224
Adj. R-squared	0.0	136	0.04	43	0	.013
N	304	44	304	44	3/	044

(2) Out-of-sample analysis

Out-of-sample tests are more appropriate to avoid the in-sample overfitting issue. Hence, we examine the out-of-sample predictive performance of PhotoPes .

We evaluate the out-of-sample predictive performance based on the widely used R_{OOS}^2 statistic and MSPE-adjusted statistic.

Return	R_{OOS}^2 (%)	CER gain (%) Sharpe ratio (PhotoPe		Sharpe ratio (historical		
VWRETD	0.251***	1.439	0.470	0.380		
SPX	0.162***	1.150	0.441	0.304		
SPY	0.302***	1.290	0.490	0.400		
INDU	0.123***	1.042	0.396	0.224		
DIA	0.158***	1.420	0.490	0.380		

3. Results

3.3 The impact of PhotoPes on trading volume

			い よ よ よ よ よ よ よ よ よ よ よ よ よ
Anothe helps u		$ar{V}_t$	ınnel
To rem	Variables	eta	<i>t</i> -stat
_	PhotoPes _{t-1}	-0.003	-0.157
To test	PhotoPes _{t-2}	-0.006	-0.278
	PhotoPes _{t-3}	0.014	0.686
	PhotoPes _{t-4}	-0.015	-0.786
	PhotoPes _{t-5}	-0.011	-0.582
	PhotoPes _{t-1}	0.080***	2.912
	$ PhotoPes_{t-2} $	0.013	0.453
	$ PhotoPes_{t-3} $	0.008	0.237
	$ PhotoPes_{t-4} $	0.059**	2.059
	$ PhotoPes_{t-5} $	0.015	0.511
-	Adj. R-squared	0.023	
	Ν	3044	

3. Results 3.4 Robustness

			Par	iel A: Cutoff =	= {0.55,0.45}					
	(1	1)	(2)	Ε))	(4)	(5)
	VWR	ETDt	SP2	K _t	SP	Y _t	IND	0Ut	DIAt	
Variables	β	<i>t</i> -stat	β	t-stat	β	t-stat	β	t-stat	β	<i>t</i> -stat
PhotoPes _{t-1}	-0.040*	-1.705	-0.038*	-1.652	-0.038*	-1.680	-0.044**	-2.059	-0.046**	-2.140
PhotoPes _{t-2}	0.043*	1.685	0.038	1.515	0.036	1.463	0.032	1.355	0.029	1.223
PhotoPes _{t-3}	-0.024	-0.977	-0.022	-0.885	-0.025	-1.040	-0.017	-0.727	-0.019	-0.830
PhotoPes _{t-4}	0.038	1.605	0.033	1.391	0.035	1.520	0.039*	1.784	0.043*	1.932
PhotoPes _{t-5}	0.049*	1.783	0.051*	1.874	0.049*	1.837	0.047*	1.818	0.045*	1.759
Sum t-1 to t-5	0.066	0.062	0.057	0.057	0.052					
Sum t-2 to t-5	0.106	0.100	0.095	0.101	0.098		2		2	
2	$\chi^{2}(1)$	p-value	$\chi^{2}(1)$	p-value	$\chi^{2}(1)$	<i>p</i> -value	$\chi^{2}(1)$	p-value	$\chi^{2}(1)$	p-value
$\chi^2(1)$ [Sum t-1 to t-5 = 0] $\chi^2(1)$ [Sum t-2 to t-5 = 0]	2.116 6.118**	0.146 0.013	1.900 5.591**	0.168 0.018	1.675 5.223**	0.196 0.022	1.803 6.366**	0.179 0.012	1.520 5.969**	0.218 0.015
Adj. R-squared	0.029		0.035		0.028		0.039		0.038	
Ν	3044		3044		3044		3044		3044	
				anel B: No wi						
	(1)		(2)		(3)		(4		(5)	
		ETD _t	SP	-	SP	-	IND		DIAt	
Variables	β	t-stat	β	t-stat	β	t-stat	β	t-stat	β	<i>t</i> -stat
PhotoPes _{t-1}	-0.044*	-1.819	-0.043*	-1.792	-0.043*	-1.797	-0.049**	-2.194	-0.049**	-2.188
PhotoPes _{t-2}	0.061**	2.126	0.057**	2.025	0.055*	1.915	0.049*	1.842	0.044*	1.661
PhotoPes _{t-3}	-0.025	-0.911	-0.021	-0.781	-0.025	-0.971	-0.014	-0.545	-0.017	-0.646
PhotoPes _{t-4}	0.025 0.053*	1.039 1.880	0.018 0.056**	0.764 2.031	0.022 0.052*	0.965 1.903	0.023 0.054**	0.995 2.029	0.026 0.051*	1.146 1.910
PhotoPes _{t-5}										
Sum t-1 to t-5 Sum t-2 to t-5)70 14	0.0 0.1		0.0 0.1		0.063 0.112		0.055 0.104	
	$\chi^2(1)$	p-value	$\chi^2(1)$	p-value	$\chi^2(1)$	p-value	$\chi^2(1)$	p-value	$\chi^2(1)$	p-value
$\chi^{2}(1)$ [Sum t-1 to t-5 = 0]	2.195	0.138	2.094	0.148	1.750	0.186	2.014	0.156	1.684	0.194
$\chi^2(1)$ [Sum t-2 to t-5 = 0]	6.408**	0.011	6.178**	0.013	5.525**	0.019	7.02***	0.008	6.245**	0.012
Adj. R-squared	0.0)30	0.036		0.0	28	0.0	39	0.038	
N		44	304	44	30		304		304	14
			Pane	l C: GARCH-ad	ljusted return:	5				
	(1)	(2		5	3)	(4	4)	(5)
		RETDt	SP			PY _t	INDU _t		DIAt	
Variables	β	t-stat	β	t-stat	β	t-stat	β	t-stat	β	t-stat
PhotoPes _{t-1}	-0.036*	-1.948	-0.036*	-1.959	-0.035*	-1.935	-0.042**	-2.348	-0.043**	-2.372
PhotoPes _{t-2}	0.042**	2.203	0.041**	2.172	0.041**	2.162	0.042**	2.205	0.044**	2.273
PhotoPes _{t-3}	-0.042**	-2.219	-0.042**	-2.178	-0.043**	-2.267	-0.042**	-2.187	-0.043**	-2.261
PhotoPes _{t-4}	0.028	1.542	0.024	1.354	0.026	1.465	0.032*	1.763	0.033*	1.841
PhotoPes _{t-5}	0.037*	1.936	0.037**	1.963	0.036*	1.886	0.031	1.643	0.029	1.525
Sum t-1 to t-5	0.0)29	0.0	24	0.	025	0.0	021	0.0	20
Sum t-2 to t-5)65	0.0		0.	060)63	0.0	
	$\chi^2(1)$	p-value	$\chi^{2}(1)$	<i>p</i> -value	$\chi^2(1)$	p-value	$\chi^2(1)$	p-value	$\chi^2(1)$	p-value
$\chi^2(1)$ [Sum t-1 to t-5 = 0]	0.673	0.412	0.528	0.468	0.498	0.480	0.370	0.543	0.330	0.566
$\chi^2(1)[\text{Sum t-2 to t-5} = 0]$	3.884**	0.049	3.539*	0.060	3.392*	0.066	3.906**	0.048	3.778*	0.052
Adj. <i>R</i> -squared N		009	0.0			009		010	0.0	
	20	44	30	44)44	30)44	304	14

		Р	anel D: Trim	1% of the m	ost extreme	returns				
	(1)		(2	(2)		(3)		1)	(5) DIA _t	
	VWR	ETD _t	D_t SPX_t		X _t SPY _t		INDUt			
Variables	β	t-stat	β	t-stat	β	t-stat	β	t-stat	β	t-stat
PhotoPes _{t-1}	-0.047**	-2.238	-0.046**	-2.221	-0.045**	-2.192	-0.047**	-2.384	-0.043**	-2.201
PhotoPes _{t-2}	0.040*	1.837	0.040*	1.844	0.040*	1.860	0.028	1.372	0.032	1.625
PhotoPes _{t-3}	-0.044*	-1.909	-0.038*	-1.660	-0.037*	-1.685	-0.034	-1.615	-0.035*	-1.703
PhotoPes _{t-4}	0.041**	2.062	0.037*	1.902	0.043**	2.217	0.037**	1.979	0.043**	2.326
PhotoPes _{t-5}	0.035	1.547	0.042*	1.883	0.032	1.480	0.035*	1.685	0.018	0.898
Sum t-1 to t-5	0.0	25	0.0)35	0.033		0.019		0.015	
Sum t-2 to t-5	0.0	72	0.0	81	0.078		0.066		0.058	
	$\chi^{2}(1)$	<i>p</i> -value	$\chi^{2}(1)$	<i>p</i> -value	$\chi^{2}(1)$	<i>p</i> -value	$\chi^{2}(1)$	p-value	$\chi^{2}(1)$	p-value
$\chi^2(1)$ [Sum t-1 to t-5 = 0]	0.436	0.509	0.808	0.369	0.722	0.396	0.266	0.606	0.192	0.661
$\chi^2(1)$ [Sum t-2 to t-5 = 0]	3.982**	0.046	5.019**	0.025	4.698**	0.030	3.804*	0.051	3.047*	0.081
Adj. R-squared	0.0	18	0.0)23	0.0	23	0.0	24	0.0	25
N	30	12	30	12	30	12	30	13	30	12

4. Conclusion

- First, we document that PhotoPes predicts market return reversals. This return reversal pattern is consistent with sentiment-induced transient mispricing. This relation is strongest for difficult-to-arbitrage stocks. Moreover, we show that PhotoPes can predict market trading volume.
- Second, we show that the pessimism embedded in photos and the pessimism embedded in news text act as substitutes for each other in predicting returns. Moreover, the pessimism embedded in news photos serves to grab attention away from text during periods when photos are salient. Our evidence shows that PhotoPes is especially useful for predicting market returns during periods of elevated fear.
- Third, we demonstrate the benefit of using cutting-edge photo classification techniques to study how the information obtained from a large sample of news photos is relevant to the context of financial markets.

5. Key contributions to the literature

- First, we demonstrate the importance of visual content in making predictions about market returns.
- Second, we demonstrate how to overcome key hurdles of studying the importance of visual content in financial markets by employing machine learning techniques for large-scale photo classification.
- Third, we compare the predictive ability of PhotoPes and pessimism embedded in news text.

Thank You!