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Higher Order Effects in Asset Pricing Models
with Long-Run Risks
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ABSTRACT

This paper shows that the latest generation of asset pricing models with long-run risk
exhibit economically significant nonlinearities, and thus the ubiquitous Campbell-
Shiller log-linearization can generate large numerical errors. These errors translate
in turn to considerable errors in the model predictions, for example, for the mag-
nitude of the equity premium or return predictability. We demonstrate that these
nonlinearities arise from the presence of multiple highly persistent processes, which
cause the exogenous states to attain values far away from their long-run means with
nonnegligible probability. These extreme values have a significant impact on asset
price dynamics.

BANSAL AND YARON (2004) INTRODUCE TWO important innovations to the as-
set pricing literature. In particular, they put forward an economic mechanism
based on long-run risk to explain many empirical asset pricing facts, and they
demonstrate that the Campbell-Shiller (1988) log-linearization technique pro-
vides a simple method for analyzing such models. These two contributions
together have served as the foundation for a large literature on the ability of
long-run risk to solve empirical puzzles. By necessity, log-linearization neglects
higher order effects in asset pricing models. In this paper, we ask whether these
effects matter for the latest generation of long-run risk models. We show that
they do. More specifically, we demonstrate that, for many economically plau-
sible choices of parameters and exogenous processes, the errors introduced by
log-linearization can themselves be economically significant. In fact, for highly
persistent processes, as regularly used in the literature, the approximation
errors in moments can exceed 70%.
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Asset pricing models have become increasingly complex over the last three
decades. The first generation of such models, developed in the 1980s (Grossman
and Shiller (1981), Hansen and Singleton (1982), Mehra and Prescott (1985)),
proved inadequate in explaining key features of financial markets, such as
the high equity premium and the low risk-free rate. As the literature on asset
pricing has evolved and matured over time, researchers have added more com-
plex elements to their models such as incomplete markets (e.g., uninsurable
income risks), frictions (e.g., borrowing or collateral constraints), time-varying
risk aversion, and heterogeneous expectations. While these additional features
have had varying degrees of success, the new generation of long-run risk mod-
els (e.g., Bansal and Yaron (2004) or Hansen, Heaton, and Li (2008)), with
their interplay of persistent components in consumption growth and recursive
preferences, have had considerably more success in resolving long-standing
asset pricing puzzles. The key feature of these models is the combination of a
preference for the early resolution of risk together with highly persistent state
processes that potentially affect long-run model outcomes.

Complex models generally require numerical solution techniques. Bansal
and Yaron (2004) show that a simple linearized solution method based on the
Campbell-Shiller (1988) present-value relation works well for their original
model because the log price-dividend ratio in the model is approximately a lin-
ear function of the underlying shocks. Additionally, the linearization procedure
has the attractive property of lending itself to a simple analysis of the economic
impact of different shocks. This property is particularly appealing as it allows
the researcher to draw conclusions about parameter dependencies and eco-
nomic mechanisms in the model. Accordingly, a large group of researchers have
followed Bansal and Yaron (2004) and used the log-linearization technique to
solve asset pricing models with recursive preferences (e.g., Bollerslev, Tauchen,
and Zhou (2009), Bansal, Kiku, and Yaron (2010), Koijen et al. (2010), Constan-
tinides and Ghosh (2011), Drechsler and Yaron (2011), Bansal, Kiku, and Yaron
(2012), Beeler and Campbell (2012), Bansal and Shaliastovich (2013), Bansal
et al. (2014), and Segal, Shaliastovich, and Yaron (2015), among others). Ex-
amining this strand of literature, it is difficult to find studies that do not rely
on the Campbell-Shiller (1988) approach1—it has become the standard method
for solving asset pricing models with long-run risk.

To better match features of the data, the tendency in the long-run risk liter-
ature has been toward both higher persistence and greater model complexity.
This development suggests that it is time to take stock of whether the Campbell-
Shiller (1988) approximation is still appropriate. To address this question, we
first identify the factors that can make higher order dynamics matter for the
benchmark long-run risk model with stochastic volatility. We show that, for

1 Prominent exceptions that do not rely on log-linearized solutions are the studies by Croce, Let-
tau, and Ludvigson (2015) and Collin-Dufresne, Johannes, and Lochstoer (2016). Kaltenbrunner
and Lochstoer (2010) use log-linearized solutions to infer qualitative model implications but use
value function iteration for their quantitative results. They approximate the value function with
Chebyshev polynomials.
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highly persistent processes, these effects do matter. Economically, when shocks
are highly persistent, agents can spend longer periods trapped in undesirable
parts of the state space, which can have a large impact on investor behavior. The
problem is particularly severe when both long-run risk and stochastic volatility
are persistent. In that case, the interaction between long-run risk and stochas-
tic volatility becomes especially significant when the long-run growth rate is
low but the volatility of the growth rate is high, which in turn creates signif-
icant deviations from linearity. As a side effect, this interaction leads to large
errors in predictability regressions using simulated data: the log-linearized so-
lutions overstate the predictability of returns and understate the predictability
of dividends by the log price-dividend ratio, relative to a higher precision so-
lution. Interestingly, the persistence is a problem only in the presence of a
strong preference for the early resolution of risk. However, without a prefer-
ence for the early resolution of risk, it is difficult to generate a high equity
premium.

To show that this nonlinearity matters for real models, and is not just an
intellectual exercise, we examine the consequences of ignoring nonlinear dy-
namics in the Bansal and Yaron (2004) model as well as five other recent stud-
ies, namely, the newly calibrated version of Bansal, Kiku, and Yaron (2012),
the extensive calibration study of Schorfheide, Song, and Yaron (2018), the
volatility-of-volatility model of Bollerslev, Xu, and Zhou (2015), and the studies
on real and nominal bonds of Koijen et al. (2010) and Bansal and Shalias-
tovich (2013). We show that the higher order dynamics not captured by the
Campbell-Shiller (1988) approximation can be large and economically signifi-
cant. For example, for the calibration of Bansal, Kiku, and Yaron (2012), which
is an improved calibration of the original Bansal and Yaron (2004) model (in
particular, with greater persistence in shocks to stochastic volatility), we find
that the log-linearization introduces economically significant errors in model
predictions. The equity premium, for instance, is overestimated by about 100
bps and the relative error in the volatility of the price-dividend ratio exceeds
20%. The true amount of return predictability is approximately half of what
log-linearization would suggest.

In the Bansal, Kiku, and Yaron (2012) model, most of the nonlinearities
are introduced by the pricing of equities, and using a linearized solution for
the stochastic discount factor does not lead to economically significant errors.
This approach does not generally work, however; for other model specifications
analyzed in this paper, we find significant errors in the stochastic discount
factor. Therefore, linearized solutions should not be used for any of the return
equations without carefully testing its accuracy for the specific asset pricing
model under consideration.

Schorfheide, Song, and Yaron (2018) perform a Bayesian estimation of the
model using the same approximation and find evidence of higher persistence
for long-run risk. In this case, we find approximation errors as large as 70% for
some key model moments for the 95% quantiles of the state persistence param-
eters (for the median estimates they are significantly lower). When persistence
is very high, log-linearization can actually invert the slope of the yield curve in
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the nominal bond models of Bansal and Shaliastovich (2013) and Koijen et al.
(2010).

Long-run risk has proven to be an illuminating angle on asset pricing puz-
zles, and the Campbell-Shiller (1988) log-linearization provides a good first
approximation to understand shocks’ propagation mechanisms. But for com-
plex specifications with highly persistent processes, the dynamics have proven
to be richer than they seem at first glance, with significant economic impli-
cations. Since the data strongly incline researchers to consider such models,
it is important to correctly describe these rich dynamics to fully understand
them.

The paper is organized as follows. Section I describes the general model
framework that we use throughout the paper. In Section II, we identify the
factors that introduce higher order dynamics to asset pricing models with long-
run risk. Section III analyzes the implications of higher order effects for six
recent asset pricing studies. Section IV concludes.

I. Model Framework

We consider a standard asset pricing model with a representative agent and
recursive preferences as in Epstein and Zin (1989) and Weil (1990). Indirect
utility at time t, Vt, is given recursively by

Vt =
[
(1 − δ)C

1−γ
θ

t + δ
[
Et

(
V 1−γ

t+1

)] 1
θ

] θ
1−γ
. (1)

In this parameterization, Ct is consumption, δ is the time discount factor, γ
determines the level of relative risk aversion, and θ = 1−γ

1− 1
ψ

, where ψ is the

elasticity of intertemporal substitution (EIS). The parameters γ and ψ are
required to satisfy 0 < γ,ψ , and ψ �= 1.2 For θ = 1, the agent has standard
constant relative risk aversion (CRRA) preferences. Values of γ > 1/ψ indicate
a preference for the early resolution of risk and values of γ < 1/ψ indicate a
preference for late resolution. The general asset pricing equation to price any
asset i with ex-dividend price Pi,t and dividend Di,t is given by

Et[Mt+1 Ri,t+1] = 1, (2)

where Ri,t+1 = Pi,t+1+Di,t+1
Pi,t

. For recursive preferences, the stochastic discount
factor Mt+1 is given by

Mt+1 = δ

(
Ct+1

Ct

)− 1
ψ

⎛
⎜⎝ Vt+1[

Et

(
V 1−γ

t+1

)] 1
1−γ

⎞
⎟⎠

1
ψ

−γ

. (3)

2 We consider the special case of ψ = 1 in Section C.
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Epstein and Zin (1989) show that the (unobserved) value of aggregate wealth,
Wt, can be expressed in terms of the value function,

Wt = V 1−1/ψ
t

(1 − δ)C−1/ψ
t

. (4)

This expression allows us to express Mt+1 in terms of the gross return to the
claim on aggregate consumption Rw,t+1,

Mt+1 = δθ
(

Ct+1

Ct

)− θ
ψ

Rθ−1
w,t+1, (5)

where Rw,t+1 = Wt+1
Wt−Ct

. Since equation (2) has to hold for all assets, it must
also hold for the return of the aggregate consumption claim. Thus, Rw,t+1 is
determined by the wealth-Euler equation

Et

[
δθ
(

Ct+1

Ct

)− θ
ψ

Rθ
w,t+1

]
= 1. (6)

We also define Rm,t+1 as the gross return to the claim on aggregate dividends
with log dividend growth, �dt+1. The gross risk-free return is given by Rf

t+1 =
Et[Mt+1]−1 and the (unconditional) equity premium is defined as E(Rm,t − Rf ,t).

Throughout the paper, we consider different setups for the specification of
log consumption growth, �ct+1. The original specification in the seminal long-
run risk model of Bansal and Yaron (2004) uses a single volatility process that
drives uncertainty in the economy, σt, and a long-run growth process, xt, that
affects both log consumption growth and log dividend growth. Specifically, the
four processes are given as follows:

�ct+1 = μc + xt + φcσtηc,t+1,

xt+1 = ρxt + φxσtηx,t+1,

σ 2
t+1 = σ̄ 2(1 − ν) + νσ 2

t + φσωt+1,

�dt+1 = μd +
xt + φdσtηd,t+1 + φd,cσtηc,t+1
×ηc,t+1, ηx,t+1, ηd,t+1, ωt+1 ∼ i.i.d. N(0,1).

(7)

We elaborate on the properties and key features of the model at the beginning
of Section II. In the remainder of the paper, we consider variations of this setup
that include different specifications for the stochastic volatility processes as
well as additional state processes such as volatility-of-volatility or inflation.

The common approach to solving the long-run risk models in the finance lit-
erature is to log-linearize the model. For examples of this approach, see Boller-
slev, Tauchen, and Zhou (2009), Koijen et al. (2010), Bansal, Kiku, and Yaron
(2010), Constantinides and Ghosh (2011), Drechsler and Yaron (2011), Beeler
and Campbell (2012), Bansal, Kiku, and Yaron (2012), Bansal and Shalias-
tovich (2013), Bansal et al. (2014), and Segal, Shaliastovich, and Yaron (2015),
among others. By construction, however, log-linearization misses the influence



1066 The Journal of Finance R©

of higher order dynamics—that is, it does not attempt to approximate nonlinear
features of the exact solution. But what if these features matter quantitatively
for equilibrium outcomes? Does log-linearization still deliver sufficiently accu-
rate approximations of the exact solution?

We address these critical questions in this paper. To do so, we need an alter-
native solution method that accurately accounts for higher order dynamics and
yields robust solutions. In the body of the paper, we use projection methods (see
Judd (1992)), which capture these nonlinear effects and are known to converge
to the true solution (see Atkinson (1992)). For a stochastic growth model with
Epstein-Zin utility, Caldara et al. (2012, p. 189) note that projection methods
“provide a terrific level of accuracy with reasonable computational burden.”
The choice of projection method is not essential, in that other methods known
to converge to the true solution, such as Tauchen and Hussey (1991), get sim-
ilar results, though projection methods seem to do so with less computational
cost. In Appendix A, we discuss the pros and cons of different computational
methods for asset pricing models, and we provide a detailed description of the
log-linear and projection solution methods.

II. Higher Order Dynamics in Long-Run Risk Models

We begin our analysis by identifying the factors that influence the higher
order dynamics in long-run risk models. To do so, we use the standard long-run
risk framework of Bansal and Yaron (2004) (see the four processes in equation
(7)). Key features of the model are the highly persistent state processes for
the long-run growth rate, xt, and stochastic volatility, σt. As we demonstrate
later, the model requires that the persistence parameters ρ and ν be very close
to one, as otherwise the model predictions do not match the data. Combining
these highly persistent processes with a preference for the early resolution
of risk (γ > 1

ψ
), Bansal and Yaron (2004) are able to explain many puzzling

features of financial markets such as the high equity premium together with a
low risk-free rate and the volatility of the market return, of the risk-free rate,
and of the price-dividend ratio. As Beeler and Campbell (2012) observe, the
original calibration of Bansal and Yaron (2004) implies, counterfactually, that
consumption and dividend growth are highly predictable from stock prices.
In response to this observation, Bansal, Kiku, and Yaron (2012) recalibrate
the model to better match the level of predictability in the data.3 We use this
calibration to analyze the impact of higher order dynamics on quantitative
equilibrium outcomes in the long-run risk model.

A. Parameter Values and Numerical Errors

In Figure 1, we plot the log price-dividend ratio, pt − dt, in the model of
Bansal, Kiku, and Yaron (2012) as a function of the states xt and σ 2

t . The dark

3 Bansal, Kiku, and Yaron (2012) increase the influence of the stochastic volatility channel
relative to the long-run risk channel to reduce the predictability of consumption and dividend
growth.
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Figure 1. Log price-dividend ratio in the long-run risk model. The figure plots the log-
linearized solution for the log price-dividend ratio (dark gray surface) as well as the global
solution (transparent gray surface) as a function of the states xt and σ 2

t . Parameters:
δ = 0.9989, γ = 10, ψ = 1.5, μ = 0.0015, φc = 1, φx = 0.038, ρ = 0.975, σ̄ = 0.0072, ν = 0.999, φσ =
2.8e-6, μd = 0.0015,
 = 2.5, φd = 5.96, and φd,c = 2.6.

gray surface shows the log-linearized solution as used in Bansal, Kiku, and
Yaron (2012) and the transparent gray surface plots the high-precision solu-
tion obtained by the projection approach.4 As can be seen, the log-linearization
systematically underestimates the log price-dividend ratio and produces a
steeper ratio in both state dimensions. An underestimation of pt − dt implies
an overestimation of the equity risk premium. Hence, an analysis relying on
the log-linearized solution falsely predicts a larger equity premium than does
an analysis based on the higher precision solution. Also, the greater steepness
in the log price-dividend ratio as a function of the two state variables implies
a larger volatility of the price-dividend ratio. As both the equity premium and

4 Appendix B provides a formal analysis of the accuracy of the projection approach. To com-
pute accurate solutions with the projection method, we increase the approximation interval and
the polynomial approximation degree until the solutions no longer change and the polynomial
coefficients for the highest degree polynomial are close to zero. This approach ensures that we
capture the higher order dynamics introduced by the tails of the state processes. A key issue in
specification (7) is that the variance process σ 2

t can become negative. The log-linearization “ig-
nores” this effect as it linearizes around a reference point that is well above zero. When using a
global method—such as the projection approach—the best approach is not obvious. We, therefore,
conducted several tests using different setups for the state space and the evaluation of negative
realizations. These show that the treatment of the negative range of the variance process has a
negligible influence on the equilibrium outcomes of the global method. Figure 1 reveals the reason
for this robust property. The difference between the log-linear solution and the global solution is
large for large σ 2

t , but for small σ 2
t there is almost no difference and the log price-dividend ratio

becomes almost linear. Hence, the domain subset with small volatility values, where the errors are
small, has a negligible influence on equilibrium outcomes.
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Figure 2. State persistence and errors in the log price-dividend ratio. The figure plots the
log price-dividend ratio in the long-run risk model (7) with constant volatility (σt = σ̄ ∀ t). The left
panel shows the results for ρ = 0.975 and the right panel for ρ = 0.995. In the top row, the solid
line shows the global solution and the dashed line shows the solution from the Campbell-Shiller
(1988) log-linearization. The figures in the bottom row show the differences between the two so-
lutions. Parameters: δ = 0.9989, γ = 10, ψ = 1.5, μ = 0.0015, φc = 1, φx = 0.038, σ̄ = 0.0072, μd =
0.0015,
 = 2.5, φd = 5.96, and φd,c = 2.6.

the volatility of the price-dividend ratio are key quantities that the long-run
risk model tries to explain, the systematic overestimation of these features is
an unpleasant property of the solution method. In practice, of course, it is only
relevant if the differences are numerically large enough to matter. We docu-
ment that they are, and that these errors are particularly severe when the
underlying state processes are highly persistent.

To understand the influence of the persistence of the state processes on the
nonlinearities of the model, consider first the simplified example of a long-run
risk model with constant volatility and hence only one state process (speci-
fication (7) with σt = σ̄ ∀ t). In Figure 2, we plot the log price-dividend ratio
obtained by the Campbell-Shiller (1988) log-linearization, the global solution,
as well as the difference between the two as a function of the state xt. The
left panel shows the results for ρ = 0.975 and the right panel for ρ = 0.995.
We find that for ρ = 0.975 the log price-dividend ratio is almost linear and
the difference between the two solutions is close to zero, while for ρ = 0.995
the nonlinearity in the global solution of the log price-dividend ratio be-
comes more pronounced, and thus the difference between the two solutions in-
creases strongly. The difference is especially large for small and large xt, which
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highlights the nonlinear nature of the log price-dividend ratio for highly per-
sistent state processes. Since the long-run risk model requires that persistent
processes be consistent with the data, this feature suggests that the limitations
of log-linearization are of considerable practical significance.

Figure 3 plots errors in the log price-dividend ratio introduced by the log-
linearization for different values for the persistence of long-run risk ρ and
stochastic volatility ν for the full long-run risk model with stochastic volatil-
ity. The left panel shows relative errors in the unconditional mean of the log
price-dividend ratio and the right panel shows the relative errors in the un-
conditional volatility. We find that the errors increase dramatically with the
persistence of the state processes ρ and ν, with the errors in the volatility of the
log price-dividend ratio becoming as large as 50% for large values of ρ and ν. To
demonstrate that these calibrations are not artificially constructed to obtain
large errors, we also plot the point estimates for ρ and ν used in the stud-
ies of Bansal and Yaron (2004) (BY), Bansal, Kiku, and Yaron (2012) (BKY),
and Schorfheide, Song, and Yaron (2018). For the study of Schorfheide, Song,
and Yaron (2018), we plot the median estimates (SSY1) as well as the 95%
estimates (SSY2) to demonstrate the range of parameters, and hence errors,
that are included within the estimation procedure. We find that the param-
eter values used in the studies—except for those in the study of Bansal and
Yaron (2004)—are in the area where approximation errors are large and sig-
nificant. For example, in Bansal, Kiku, and Yaron (2012), the volatility of the
log price-dividend ratio is overestimated by more than 20%.5

While Figure 3 plots errors in the moments of the monthly log price-dividend
ratio, asset pricing models such as Bansal and Yaron (2004) and Bansal, Kiku,
and Yaron (2012) are usually calibrated to match annualized market out-
comes. Therefore, in Figures 4 and 5, we plot the annualized equity premium
E(Rm,t − Rf ,t) and the annual volatility of the log price-dividend ratio, respec-
tively, obtained by the log-linearized solution as well as the global solution as a
function of the risk aversion, γ , and the EIS, ψ , in the first row and the serial
correlations in the long-run risk channel, ρ, and the stochastic volatility chan-
nel, ν, in the second row. We find that for this particular calibration, for a risk
aversion of approximately five, the log-linearized solution basically coincides
with the solution from the projection approach, which suggests that a linear
solution gives a reasonable approximation of the model. However, for this small
a risk aversion the implied model moments collapse, with an equity premium
slightly above 2% and a sharp decrease in the volatility of the log price-dividend
ratio. When we increase the risk aversion, the errors in the equity premium
and the volatility of the log price-dividend ratio increase significantly, with a
large overestimation of both quantities. Furthermore, in line with the previ-
ous results, the accuracy depends highly on the persistence of the processes

5 Note that, except for the study of Bansal, Kiku, and Yaron (2012), the values reported for the
errors do not correspond to the errors in the studies, as the authors use different calibrations for
the other model parameters. The exercise serves to demonstrate the potential errors introduced
when using log-linearization to solve highly persistent models. A full evaluation of the different
studies is conducted in Section III.
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Figure 4. Sensitivity of the approximation errors for the annualized equity premium
in the long-run risk model. The figure plots the annual equity premium obtained by the
log-linearization (dashed line) as well as the global solution (solid line) as a function of the
model parameters γ,ψ, ρ, and ν, assuming that the other parameters are kept constant. In
each panel, the vertical line denotes the estimate used in the calibration of Bansal, Kiku,
and Yaron (2012). Parameters: δ = 0.9989, γ = 10, ψ = 1.5, μ = 0.0015, φc = 1, φx = 0.038, ρ =
0.975, σ̄ = 0.0072, ν = 0.999, φσ = 2.8e-6, μd = 0.0015,
 = 2.5, φd = 5.96, and φd,c = 2.6.

for both long-run risk and stochastic volatility. We find that even very small
changes can dramatically increase approximation errors. For example, in the
original calibration with a persistence in the long-run risk of ρ = 0.975, the
overestimation of the equity premium is about 100 bps (vertical black line).
By slightly increasing ρ to 0.98, however, the difference almost doubles, with
an overestimation of 180 bps. For the persistence in the stochastic volatility,
ν, even a change of 0.0005 (from 0.999 to 0.9995) increases the overestimation
to 170 bps. The figures also show that lowering the persistence parameters
significantly decreases approximation errors. For example, for ν = 0.99 the
approximation error is close to zero. Again, however, for this calibration the
implied model moments collapse. Given the model requires highly persistent
state processes, a large degree of risk aversion, and an EIS exceeding one, it fol-
lows that nonlinear dynamics in the model are present and strong. This model
feature renders the use of log-linearization a problematic method for solving
the model since it implies large approximation errors and even tiny changes in
the model parameters can strongly affect these errors.

REMARK: While most readers will agree with our qualitative insights con-
cerning the presence of numerical errors in the log-linearized solution, some
researchers in the asset pricing literature may disagree with our describing
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Figure 5. Sensitivity of the approximation errors for the annual volatility of the price-
dividend ratio in the long-run risk model. The figure plots the annual volatility of the log
price-dividend ratio obtained by the log-linearization (dashed line) as well as the global solution
(solid line) as a function of the model parameters γ,ψ, ρ, and ν, assuming that the other parameters
are kept constant. In each panel, the vertical line denotes the estimate used in the calibration of
Bansal, Kiku, and Yaron (2012). Parameters: δ = 0.9989, γ = 10, ψ = 1.5, μ = 0.0015, φc = 1, φx =
0.038, ρ = 0.975, σ̄ = 0.0072, ν = 0.999, φσ = 2.8e-6, μd = 0.0015,
 = 2.5, φd = 5.96, and φd,c =
2.6.

several numerical errors as “large.” We therefore briefly discuss the quantita-
tive relevance of our results.

We consider an overestimation of the annualized equity premium of 100 bps
(see Figure 4) to be a serious error deserving our attention. However, Bansal
and Yaron (2004, Table IV) report a point estimate of 6.33% with a standard
error of 2.15% for the equity premium in U.S. market data. In relation to these
data, the approximation error is less than one-half of the standard error, and
thus, statistically speaking, the difference between the log-linearized solution
and the projection solution is rather small. Obviously, a reader with this purely
statistical viewpoint will disregard our analysis. (Of course, the question then
arises as to how many asset pricing “puzzles” survive such a statistical stan-
dard, when a model equity premium of 2% is considered sufficient because it
lies in the 95% confidence interval.)

We recognize this criticism of our interpretation of the results, but we also
propose two counterarguments. First, judging from a good number of papers
in the asset pricing literature, many authors appear to interpret the idea of
“matching the data” as not only a qualitative but also as a quantitative objec-
tive. From this perspective, a numerical error of 100 bps relative to a point
estimate of 6.33% is economically relevant and deserves our attention. Second,
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Table I
Nonlinearities with and without Interaction of Stochastic Volatility

and Long-Run Risk
The table reports the annualized mean and standard deviation of the log wealth-consumption ra-
tio, the log price-dividend ratio, the equity premium, as well as the relative errors of the log-linear
solution. Results are shown for the standard long-run risk model (specification (7)) as well as
the case without stochastic volatility in xt (equation (7) with equation (8) for the long-run risk
process). Parameters: δ = 0.9989, γ = 10, ψ = 1.5, μ = 0.0015, φc = 1, φx = 0.038, ρ = 0.975, σ̄ =
0.0072, ν = 0.999, φσ = 2.8e − 6, μd = 0.0015,
 = 2.5, φd = 5.96, and φd,c = 2.6.

E(wt − ct) σ (wt − ct) E(pt − dt) σ (pt − dt) E(Rm,t − Rf ,t)

Panel A: With Stochastic Volatility in xt

Log-Linear 4.14 0.10 3.04 0.29 8.28
Global 4.21 0.09 3.24 0.24 7.30
Error 1.74% 12.10% 6.04% 22.02% 13.49%

Panel B: With Constant Volatility in xt

Log-Linear 4.51 0.04 3.94 0.15 4.48
Global 4.51 0.04 3.94 0.15 4.48
Error 0.11% 2.16% 0.03% 0.11% 0.10%

we solve an economic model not only to compare forecasts with data, but also
to understand the economic mechanisms within the model. To gain such an un-
derstanding, we want to know the exact forecasts of the model and how these
react to parameter changes. From this model analysis perspective, solutions
of high accuracy are desirable even in the presence of large standard errors in
the data.

B. Sources of Numerical Errors

In this section, we analyze in more detail the source of nonlinearity in the
model solution. We found in the previous section that the two persistence pa-
rameters ρ and ν play a central role in the model: the larger their values, the
larger the errors in the log-linear approximation become. However, as we show
below, it is the interaction between long-run risk and stochastic volatility that
makes the errors particularly severe. Put differently, the possibility of a large
shock to volatility also increasing the probability of a large (negative) shock to
the consumption growth rate affects both the model solution and the numerical
error of the log-linear approximation.

Consider a model setup in which we turn off the influence of stochastic
volatility on long-run risk. That is, we set the volatility of xt from the cash flow
equations (7) to its constant long-run mean, σ̄ , which results in the specification

xt+1 = ρxt + φxσ̄ ηx,t+1. (8)

Note that the stochastic volatility σt still influences log consumption and log
dividend growth. Table I reports the annualized mean and standard deviation
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Figure 6. Absolute approximation errors in the log wealth-consumption and the log
price-dividend ratio in the long-run risk model with stochastic volatility in xt. The figure
plots isolines (black solid lines) for the absolute errors in the log wealth-consumption ratio (left
panel) and the log price-dividend ratio (right panel) of the log-linearization as a function of the
states xt and σ 2

t . The dark gray area shows the range of two unconditional standard deviations of
the state processes. For xt the area is computed using a given shock of two unconditional standard
deviations in σ 2

t . The light gray area shows the corresponding range for four unconditional standard
deviations. Results are shown for the standard long-run risk model with stochastic volatility in
xt (specification (7)). Parameters: δ = 0.9989, γ = 10, ψ = 1.5, μ = 0.0015, φc = 1, φx = 0.038, ρ =
0.975, σ̄ = 0.0072, ν = 0.999, φσ = 2.8e-6, μd = 0.0015,
 = 2.5, φd = 5.96, and φd,c = 2.6.

of the log wealth-consumption ratio, the log price-dividend ratio, the equity
premium, as well as the relative errors of the log-linear solution.

In line with our previous results, the errors for the standard long-run risk
model are large and significant, with the largest error in the volatility of the log
price-dividend ratio of 22%. For the case with no stochastic volatility in xt, the
errors decrease to almost zero and the log-linear approximation provides an
accurate solution. On the other hand, the equity premium also decreases from
7.3% to 4.48%. These results show that the interaction between long-run con-
sumption risk and stochastic volatility is a crucial risk channel in the long-run
risk model. However, the standard Campbell-Shiller (1988) log-linear approxi-
mation misses any interaction effects between xt and σt and only captures the
linear dependencies.

Why does the interaction between the two risk channels matter so much? In
Figure 6, we plot isolines (black solid lines) for the absolute errors in the log
wealth-consumption ratio (left panel) and the log price-dividend ratio (right
panel) of the log-linearization as a function of the states xt and σ 2

t for the
model with stochastic volatility in xt. For example, along the line marked with
“0.1,” the absolute error of the log-linearization is 0.1. The figures also depict
the regions that the model actually visits and the regions in which it “spends
most of its time” over long simulations. We display the ranges of two and four
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Figure 7. Absolute approximation errors in the log wealth-consumption ratio and the
log price-dividend ratio in the long-run risk model with constant volatility in xt. The
figure plots isolines (black solid lines) for the absolute errors in the log wealth-consumption
ratio (left panel) and the log price-dividend ratio (right panel) of the log-linearization as a
function of the states xt and σ 2

t . The dark gray area shows the range of two unconditional
standard deviations of the state processes. For xt the area is computed using a given shock
of two unconditional standard deviations in σ 2

t . The light gray area shows the correspond-
ing range for four unconditional standard deviations. Results are shown for the long-run risk
model without stochastic volatility in xt (specification (7) with equation (8) for the long-run risk
process). Parameters: δ = 0.9989, γ = 10, ψ = 1.5, μ = 0.0015, φc = 1, φx = 0.038, ρ = 0.975, σ̄ =
0.0072, ν = 0.999, φσ = 2.8e-6, μd = 0.0015,
 = 2.5, φd = 5.96, and φd,c = 2.6.

unconditional standard deviations for the stochastic volatility state around its
unconditional mean. For the long-run growth rate, we also show the ranges of
two and four unconditional standard deviations for a given level of σ 2

t for which
we again use the values of two and four unconditional standard deviations. This
region nicely demonstrates the interaction between the two risk sources as will
become clear below.

We find that the absolute errors in the log wealth-consumption ratio are
not too severe, with errors in the wealth-consumption ratio reaching about
16% (e0.15 ≈ 1.16 ) for extreme values of the stochastic volatility process. The
absolute errors in the log price-dividend ratio are considerably larger—they
reach values of up to 0.35 in the two-standard-deviation and 0.65 in the four-
standard-deviation range. In other words, the price-dividend ratio obtained
by the log-linearization is off by a factor of e0.35 ≈ 1.42 in the two-standard-
deviation range and can be off by a factor of about two for extreme values of
the state processes.6

Figure 7 plots the corresponding results for the case in which the volatility of
xt is constant. We find that the range of xt decreases significantly, as the shocks

6 In Figures E1 and E2 in Appendix E, we show the corresponding errors in the first and second
derivatives of the log wealth-consumption and price-dividend ratio.
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to volatility have no influence on xt anymore. To better understand this effect,
consider the unconditional distribution of xt+1 for a given level of σ 2

t . For the
case in which the volatility of xt is stochastic, we find that

xt+1|σ 2
t ∼ N

(
0,

φ2
xσ

2
t

(1 − ρ2)

)
.

This distribution implies that a negative two-standard-deviation shock to xt,
assuming that σ 2

t is at its two-standard-deviation level, gives a value of xt+1 =
−0.0046,7 or a 5.52% reduction in log mean consumption growth annually. For
the case in which the volatility of xt+1 is constant, and hence the level of σ 2

t
does not influence xt+1, we find that

xt+1|σ 2
t ∼ N

(
0,

φ2
x σ̄

2

(1 − ρ2)

)
.

This distribution implies that a negative two-standard-deviation shock to xt, as-
suming that σ 2

t is at its two-standard-deviation level (which has no influence),
gives a value of xt+1 = −0.0025,8 or a 2.96% reduction in mean consumption
growth annually. So the reduction in mean consumption growth is almost twice
as large in the case in which the volatility of xt is stochastic. Hence, for the
case in which the volatility of xt is constant, the extreme regions of xt do not
matter as much anymore. We therefore find in Figure 7 that the errors in the
wealth-consumption as well as the price-dividend ratio decrease significantly
compared to the stochastic volatility case and are very close to zero. We con-
clude, therefore, that, once there is an interaction between the highly persistent
risk sources, the nonlinearities in the model increase significantly. Since, by
construction, the log-linearization does not include these interacting effects,
the approximation errors are potentially large.

C. The Special Case of Unitary EIS

To compute approximate closed-form solutions for the long-run risk model,
the Campbell-Shiller (1988) return linearization needs to be applied twice—
first for the return on wealth to obtain a linear solution for the log wealth-
consumption ratio, and second for the return on equity to obtain a linear solu-
tion for the log price-dividend ratio. Therefore, it may be helpful to understand
which steps introduce the nonlinearities to the model. Perhaps the linearization
can be applied to one of the return equations without introducing significant
approximation errors. Or should we avoid linearization for both pricing equa-
tions? To shed light on this question, we analyze the special case of a unitary

7 The value is computed by −2
φx (σ̄2+2 φσ

(1−ν2)0.5
)0.5

(1−ρ2)0.5
.

8 The value is computed by −2 φx (σ̄2)0.5

(1−ρ2)0.5
.
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Table II
Euler Errors in the Long-Run Risk Model with Stochastic Volatility

The table reports the maximum absolute Euler error (MAE) as well as the root mean squared
Euler error (RMSE) in the pricing equations of the wealth-consumption ratio and the price-
dividend ratio in the long-run risk model (7). Euler errors are computed using 500 equally
spaced nodes for each state. The approximation interval is taken from using the mini-
mum and maximum values from 1,000,000 years of simulated data. Results are shown for
ψ = 1 and ψ = 1.5. Parameters: δ = 0.9989, γ = 10, μ = 0.0015, φc = 1, φx = 0.038, ρ = 0.975, σ̄ =
0.0072, ν = 0.999, φσ = 2.8e-6, μd = 0.0015,
 = 2.5, φd = 5.96, and φd,c = 2.6.

Log-Linearization Global Solution

wt − ct pt − dt wt − ct pt − dt

ψ = 1.5 MAE 0.0102 0.0060 1.5e-9 4.1e-8
RMSE 0.0027 0.0009 7.5e-10 7.4e-9

ψ = 1 MAE – 0.0090 – 1.5e-6
RMSE – 0.0018 – 2.5e-7

EIS, ψ = 1. In this case, the log wealth-consumption ratio is constant,

wt − ct = log
(

1
1 − δ

)
(9)

(see Tallarini (2000)). The stochastic discount factor (3) for the long-run risk
model can be derived in closed form and is given by

Mt+1 = δ

(
Ct+1

Ct

)−γ e(1−γ )vct+1

e
1−γ
δ
vct

, (10)

where vct = log Vt
Ct

is a linear function of the state variables given by vct =
a + bxt + cσ 2

t (see Appendix C for the derivations of the stochastic discount
factor and the closed-form expressions for a, b, and c). This result implies that
the log stochastic discount factor is a linear function of the state variables. So,
using the model specification with ψ = 1 implies that the only source of errors
in the linearized model is the linearization of equity returns, which allows us
to separately analyze this source of errors.

In Table II, we report Euler errors in the pricing equations for the return
on wealth and the return on equity for the model of Bansal, Kiku, and Yaron
(2012) with an EIS of ψ = 1.5 and an EIS of ψ = 1.

We find that there are significant Euler errors for the case with ψ = 1.5, with
a maximum error of 0.0102 in the pricing equation for the return on wealth
and 0.0060 in the pricing equation for the return on equity. For the case with
ψ = 1, the linear solution for the return on wealth is exact and hence the Euler
errors are zero. However, we still find that there are significant errors in the
pricing equation for the return on equity, with a maximum Euler error of 0.0090.
Table III reports the corresponding errors in the annualized mean and standard
deviation of the log price-dividend ratio as well as in the equity premium for
ψ = 1. If we compare the reported relative errors to the errors for the model
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Table III
Nonlinearities in the Long-Run Risk Model with an EIS of ψ = 1

The table reports the annualized mean and standard deviation of the log price-dividend ra-
tio, the equity premium, as well as the relative errors of the log-linear solution. Results
are shown for the standard long-run risk model (equation (7)) with an EIS of ψ = 1. Pa-
rameters: δ = 0.998, γ = 10, μ = 0.0015, φc = 1, φx = 0.044, ρ = 0.979, σ̄ = 0.0078, ν = 0.987, φσ =
2.3e − 6, μd = 0.0015,
 = 3, φd = 4.5, and φd,c = 0.

E(pt − dt) σ (pt − dt) E(Rm,t − Rf ,t)

Log-Linear 2.98 0.24 7.15
Global 3.10 0.20 6.58
Error 3.78% 17.55% 8.64%

with ψ = 1.5 (see Panel A in Table I), we observe that the relative errors are
slightly smaller but still considerable. For example, the error in the volatility of
the price-dividend ratio decreases from 22.02% for ψ = 1.5 to 17.55% for ψ = 1,
and the error in the equity premium decreases from 13.49% to 8.64%. So, even
if the pricing equation for wealth is truly linear as in the model with ψ = 1,
linearizing the return on equity introduces significant approximation errors to
the asset pricing model.

These findings suggest that nonlinearities come primarily from the pric-
ing equation of the return on equity, in which case it might be reasonable to
use a linear solution for the stochastic discount factor. To verify this claim
in the general model with ψ = 1.5, we solve the model again using the lin-
earized version for the return on wealth, but using the global method to
price equities. If the approximation errors are of the same order of magni-
tude as for the case in which we use the global solution for the pricing of both
wealth and equity, this would suggest that it might be reasonable to use log-
linearized solutions to derive the stochastic discount factor. Indeed, we find
that the equity premium is close to the value of the fully global solution with
a value of 7.51% (compared to a value of 7.30% for the global solution; see
Table I). This implies an error of 2.97%, which is significantly smaller than
the error of the fully linearized model (the model has an error of 13.49%).
This result is not true in general, however, but rather depends highly on the
model parameterization. In the next section, we present results for different
model specifications that also show significant errors in the return on wealth
for the linearized solutions. We therefore conclude that the Campbell-Shiller
(1988) return linearization should not be applied to any return equations with-
out carefully testing its accuracy for the specific asset pricing model under
consideration.

III. Higher Order Dynamics in Six Asset Pricing Models

In this section, we compare the implications of using log-linearized solutions
for the prediction of economically relevant quantities in asset pricing mod-
els. Specifically, we perform this comparison for six different studies from the
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recent asset pricing literature on long-run risk. The six models are the original
long-run risk model of Bansal and Yaron (2004), the recalibrated version of
the model by Bansal, Kiku, and Yaron (2012), the extensive estimation study of
Schorfheide, Song, and Yaron (2018), the volatility-of-volatility model of Boller-
slev, Xu, and Zhou (2015), and the two studies of real and nominal bonds of
Koijen et al. (2010) and Bansal and Shaliastovich (2013). Common to all of
these studies is the methodological attempt to match several key statistics
on financial markets such as the high equity premium, a low risk-free rate,
volatile stock prices, real and nominal bond prices, the volatility premium, or
patterns in return predictability. Obviously, to obtain a reasonable calibration
of the model, it is essential to solve the model without significant errors in the
approximation of these key statistics since such errors could potentially bias
the calibration or estimation.

In the previous section, we see that depending on the persistence of the
state processes, the log-linearization approach produces sizable approximation
errors in the calibration of the long-run risk model of Bansal, Kiku, and Yaron
(2012). We now demonstrate that using log-linearized solutions has a strong
impact on the predictions of these six asset pricing models.

A. Six Model Specifications

The six studies share the same basic model setup for log consumption and
dividend growth as the model of Bansal and Yaron (2004):

�ct+1 = μc + xt + φcσc,tηc,t+1,

xt+1 = ρxt + φxσx,tηx,t+1,

�dt+1 = μd +
xt + φdσd,tηd,t+1 + φd,cσc,tηc,t+1
×ηc,t+1, ηx,t+1, ηd,t+1 ∼ i.i.d. N(0,1).

(11)

In the following, we describe how the models differ in regard to the detailed
specifications.

B. The Studies of Bansal and Yaron (2004) and Bansal, Kiku, and Yaron
(2012)

Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2012) assume that a
single volatility process drives uncertainty in the economy, σc,t = σx,t = σd,t =
σt, with

σ 2
t+1 = σ̄ 2(1 − νc) + νcσ

2
t + φσωt+1, ωt+1 ∼ i.i.d. N(0,1). (12)

Recall that this is the model setup (with ν = νc) that we employ above to exam-
ine the approximation errors of the log-linearized solution (see also equation
(7)).

C. The Estimation Study of Schorfheide, Song, and Yaron (2018)

Schorfheide, Song, and Yaron (2018) relax the assumption of a single volatil-
ity process, allowing for three separate volatility processes for consumption,
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dividends, and long-run risk.9 The volatility processes for consumption growth
and the long-run risk factor are required to account for the weak correlation
between the risk-free rate and consumption growth. As shown in their esti-
mation study, the volatility dynamics of dividends differ significantly from the
other two processes, and thus a third process is required to model the stochas-
tic volatility of dividends. Schorfheide, Song, and Yaron (2018) assume that
the logarithm of each volatility process is normal to ensure that the standard
deviation of the shocks remains positive,

σi,t = ϕiσ̄ exp(hi,t),

hi,t+1 = νihi,t + σhi

√
1 − ν2

i ωi,t+1, i ∈ {c, x,d}
×ωi,t+1 ∼ i.i.d. N(0,1).

(13)

To derive analytical solutions for the log-linearization coefficients needed in
their estimation study, Schorfheide, Song, and Yaron (2018) use a linear ap-
proximation of the volatility dynamics that follows Gaussian dynamics,

σ 2
i,t ≈ 2(ϕiσ̄ )2hi,t + (ϕiσ̄ )2, (14)

which in turn yields

σ 2
i,t+1 = σ̄ 2

i (1 − νi) + νiσ
2
i,t + φσiωi,t+1

with φσi = 2σ̄ 2
i σhi

√
1 − ν2

i and σ̄i = ϕiσ̄ . To obtain consistent results with the
original study, we proceed in the same way as Schorfheide, Song, and Yaron
(2018) and solve the model using the linearized version of the volatility dy-
namics for both the linearized as well as the global solution obtained by the
projection approach.

D. The Estimation Study of Bollerslev, Xu, and Zhou (2015)

The fourth model stems from the estimation study of Bollerslev, Xu, and
Zhou (2015). In a standard long-run risk model with stochastic volatility, many
long-standing puzzling behaviors of financial markets such as a high equity
risk premium together with a low risk-free rate, volatile price dynamics, and
the predictability of stock returns can be explained. However, recent research
goes a step further by showing that the standard model is not able to gener-
ate a time-varying variance risk premium that has predictive power for stock
returns. Fortunately, the literature has suggested a possible solution to this
puzzle by adding time-varying volatility of volatility (vol-of-vol) to the model
(see, e.g., Bollerslev, Tauchen, and Zhou (2009), Drechsler and Yaron (2011),
Tauchen (2011), Bollerslev, Xu, and Zhou (2015), and Dew-Becker et al. (2017)).

9 Schorfheide, Song, and Yaron (2018) also introduce a shock to the time rate of preferences.
Since in this study we are interested in the influence of higher order effects introduced by the highly
persistent state processes, we omit the preference shock. For this purpose we set ρλ = σλ = 0 in
their model specification.
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Bollerslev, Xu, and Zhou (2015) consider a slight variation of the long-run risk
factor compared to the baseline model (7) in which the vol-of-vol factor qt drives
the volatility,10

σ 2
t+1 = σ̄ 2(1 − ν) + νσ 2

t + φσ
√

qtωσ,t+1,

qt+1 = μq(1 − ρq) + ρqqt + φq
√

qtωq,t+1,

xt+1 = ρxt + φx
√

qtηx,t+1
×ηx,t+1, ωσ,t+1, ωq,t+1 ∼ i.i.d. N(0,1).

(15)

The vol-of-vol factor qt follows a square root process. This process specification
has also been used, for example, in Tauchen (2011) and in the seminal work
on vol-of-vol in this model class by Bollerslev, Tauchen, and Zhou (2009). How-
ever, a square root process poses a new challenge to the model, as the process
can become complex-valued when qt is negative. This problem is usually cir-
cumvented either by assuming a reflecting boundary at zero or by truncation to
ensure positivity. However, for a simple computation of model solutions, the as-
sumption of a nontruncated distribution for the log-linearization is commonly
used. (For example, Bansal and Yaron (2004) use the nontruncated distribu-
tion to compute the log-linearized solutions but replace negative realizations
in the simulations of the stochastic volatility process with small positive num-
bers. This approach has been used by many subsequent papers in the long-run
risk literature.) In Appendix D, we analyze in more detail how the square
root process specification and the issue of complexity affects the log-linearized
solution. We find that, for the calibration in Bollerslev, Tauchen, and Zhou
(2009), equilibrium model solutions are not real numbers but rather are com-
plex numbers. For the parameters in Bollerslev, Xu, and Zhou (2015), the pro-
cess is centered well above zero and the standard log-linearization technique
yields a real solution. We therefore concentrate on this calibration in the main
text.

E. The Model of Koijen et al. (2010)

The fifth study under consideration is the study of real and nominal bonds
and the size of the martingale component in the stochastic discount factor by
Koijen et al. (2010). They add inflation, πt, with a stochastic growth rate, xπ,t,
to the standard model (11) and price nominal bonds:11

10 Drechsler and Yaron (2011) use a similar model where the volatility of xt is driven by σt in-
stead of qt; see their 2007 working paper version. However, Bollerslev, Xu, and Zhou (2015) provide
evidence of a better empirical match for their model specification. The estimation study of Boller-
slev, Xu, and Zhou (2015) also models cross-correlations between the shocks of the state processes.
For the analysis of the nonlinear dynamics of the model, we keep the model as parsimonious as
possible and drop the cross-correlations.

11 The model setup is the same as in the 2008 version of Bansal and Shaliastovich (2013). In the
paper, they write π̄t for xπ,t.
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πt+1 = μπ + xπ,t + φπ,cσc,tηc,t+1 + φπ,xσx,tηx,t+1 + σπηπ,t+1,

xπ,t+1 = μxπ (1 − ρπ ) + ρπxπ,t + ρπ,xxt
+φxπ ,cσc,tηc,t+1 + φxπ ,xσx,tηx,t+1 + σxπ ηπ,t+1
×ηπ,t+1 ∼ i.i.d. N(0,1).

(16)

Koijen et al. (2010) assume that there are two stochastic volatility processes
for consumption growth and the long-run risk component (σd,t = σc,t),

σ 2
i,t+1 = σ̄ 2

i (1 − νi) + νiσ
2
i,t + φσiωi,t+1, i ∈ {c, x},

and that inflation, the stochastic growth rate of inflation, and dividends have
loadings on these two volatility channels.

F. The Model of Bansal and Shaliastovich (2013)

The sixth and last study under consideration is the work on nominal and real
bonds of Bansal and Shaliastovich (2013). The setup is very similar to Koijen
et al. (2010), but they assume that xπ,t enters the real stochastic growth rate of
consumption, xt, to model the nonneutral effect of expected inflation on future
expected growth,

πt+1 = μπ + xπ,t + σπηπ,t+1,

xπ,t+1 = ρπxπ,t + σπ,teπ,t+1,

xt+1 = ρxt + ρxπxπ,t + σ x
t ex,t+1

×ηπ,t+1, eπ,t+1, ex,t+1 ∼ i.i.d. N(0,1).

(17)

Also, they assume that there is a separate AR(1) process for the volatility of the
stochastic growth rate of inflation, σπ,t, and that the volatility of consumption
growth is constant (σc,t = σ̄c). The process for σ 2

i,t+1 is

σ 2
i,t+1 = σ̄ 2

i (1 − νi) + νiσ
2
i,t + φσiωi,t+1, i ∈ {x, π}.

As the focus of Bansal and Shaliastovich (2013) is the bond market, they do
not include a process for dividends.

Table IV reports all of the parameter values used in the six studies.12

While the parameters in Bansal and Yaron (2004) and Bansal, Kiku, and
Yaron (2012) are calibrated, Schorfheide, Song, and Yaron (2018), Bollerslev,
Xu, and Zhou (2015), and Bansal and Shaliastovich (2013) estimate the model
parameters to match annual financial market characteristics. In the first five
models, the investor has a monthly decision interval, while Bansal and Shalias-
tovich (2013) use quarterly intervals. This distinction explains, for example, the
considerable difference in the level parameters. The main difference between
the sets of parameters in the original Bansal and Yaron (2004) calibration and
the updated calibration of Bansal, Kiku, and Yaron (2012) is that in the latter

12 For the model of Bollerslev, Xu, and Zhou (2015), we use the parameter estimates in the study
for ρ, ν, and ρq. As they do not report values for the remaining parameters, we use the calibration
as reported in the 2007 working paper version of Drechsler and Yaron (2011).
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Table IV
Model Parameters

The table reports parameter values for the studies of Bansal and Yaron (2004) (from Table 4 on
p. 1495), Bansal, Kiku, and Yaron (2012) (from Table 1 on p. 193), Schorfheide, Song, and Yaron
(2018) (the median estimates from Table 5 on p. 25 are shown, as well as the 95% estimates for the
persistence parameters in parentheses), Bansal and Shaliastovich (2013) (from Table 4 on p. 22),
Koijen et al. (2010) (from Table 1 on p. 19 in the online appendix), and Bollerslev, Xu, and Zhou
(2015) (from Section 3.3 starting on p. 464).

BY (2004) BKY (2012) SSY (2016) BS (2013) KLVV (2010) BXZ (2015)

Pref. γ 10 10 8.598 20.90 8 10
ψ 1.5 1.5 1.935 1.81 1.5 1.5
δ 0.998 0.9989 0.999 0.994 0.9987 0.999

Consumption μc 0.0015 0.0015 0.0016 0.0049 0.0016 0.0015
φc 1 1 1 1 1 0.00546
ρ 0.979 0.975 0.9872 (0.9995) 0.81 0.991 0.988
φx 0.044 0.038 1 1 1 3.12e–4
ρxπ – – – –0.047 0 –

Volatility νc 0.987 0.999 0.9914 (0.9958) 0 0.85 0.64
νx – – 0.9943 (0.9988) 0.994 0.996 –
νd – – 0.9665 (0.9841) – – –
νπ – – – 0.979 – –
φσc 2.3e–6 2.8e–6 1.9e–6 0 1.15e–6 1
φσx – – 6.9e–11 1.85e–7 4.19e–9 –
φσd – – 1.0e–4 – – –
φσπ – – – 1.81e–7 – –
σ̄c 0.0078 0.0072 0.0032 4.6e–3 0.004 1
σ̄x – – 2.34e–5 1.09e–3 1.60e–5 –
σ̄d – – 0.0161 – – –
σ̄π – – – 1.11e–3 – –

Dividends μd 0.0015 0.0015 0.001 – 0.0015 0.0015

 3.0 2.5 4.147 – 1.5 3.0
φd 4.5 5.96 1 – 6 0.0246
φd,c 0 2.6 1.544 – 0.6 0

Inflation μπ – – – 0.0090 0 –
μxπ – – – 0 0.0032 –
σπ – – – 0.0055 0.0035 –
σxπ – – – 0 4e–6 –
φπ,c – – – 0 0 –
φπ,x – – – 0 −2 –
φxπ ,c – – – 0 0 –
φxπ ,x – – – 0 −1 –
ρπ – – – 0.988 0.83 –
ρπ,x – – – 0 −0.35 –

V. of V. μq – – – – 0.211
φq – – – – 0.632
ρq – – – – 0.46
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calibration the persistence of the volatility shock, νc, is higher and shocks to div-
idends are correlated with short-run shocks to consumption growth (φd,c = 2.6
in the updated calibration compared to φd,c = 0 in the original calibration).
These changes increase the influence of the volatility channel compared to the
long-run risk channel of the model. The adjustment is needed to get rid of some
implications of the original calibration that are inconsistent with the data. In
particular, as, for example, Zhou and Zhu (2015) or Beeler and Campbell (2012)
point out with respect to the original 2004 calibration, the log price-dividend
ratio has predictive power for future consumption growth, while this relation-
ship is not present in the data. By increasing the influence of the volatility
channel, this predictability vanishes.

The extensive estimation study of Schorfheide, Song, and Yaron (2018) pro-
vides further evidence of highly persistent state processes and hence poten-
tially large nonlinear dynamics. In particular, they report a median estimate
for the persistence of long-run risk of 0.9872, and median values for the persis-
tence parameters of the stochastic volatility of consumption, long-run risk, and
dividends of 0.9914, 0.9943, and 0.9665, respectively. These four numbers are
the median estimates from Bayesian estimation. For the 95% estimates, the
authors report values as large as 0.9995, 0.9958, 0.9988, and 0.9841 (values
provided in parentheses in Table IV). As equilibrium outcomes for those param-
eters are evaluated within the estimation procedure, we also provide the results
for the 95% quantile estimates of the persistence parameters. Unfortunately,
we were not able to compute results for the full set of 95% quantile parameters
using also the higher estimates for the other cash flow and preference param-
eters. For extreme model parameters, it can be the case that there exists no
solution for the asset pricing model (see Pohl, Schmedders, and Wilms (2015)).
More surprisingly, in those cases the log-linearized solution may still deliver
a well-behaved, though apparently nonsensical, solution due to its systematic
underestimation of the price-dividend ratio (see Section A). Hence, the exis-
tence of solutions for the full range of parameters used in Schorfheide, Song,
and Yaron (2018) is not necessarily satisfied. Since in the present study we are
interested in the influence of higher order dynamics instead of the existence of
solutions, we focus on the parameter range over which the model solutions are
still well behaved. This is a rather conservative approach, as approximation
errors increase the more extreme the values in the calibration (recall Figures 4
and 5).

G. Moments and Errors

Table V reports annualized summary statistics and numerical errors for the
five models that include a dividend process. The reported financial statistics
are the mean and standard deviation of the price-dividend ratio, the averages
of the market excess return and the risk-free rate, and the volatilities of the
excess return and the risk-free rate.13 The table reports these statistics for

13 We solve the model for the return of the wealth portfolio, zw , the market portfolio, zm, and the
risk-free rate, zr f . To compute the annualized moments, we simulate 1,000,000 years of artificial
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Table V
Annualized Moments and Errors

The table reports the mean and the standard deviation of the annualized log price-dividend ratio,
the annualized market over the risk-free return, and the risk-free rate. Results obtained by the
log-linearization and the global solution as well as the relative error of the log-linearization are
shown for the models of Bansal and Yaron (2004), Bansal, Kiku, and Yaron (2012), Schorfheide,
Song, and Yaron (2018) (set (1) shows the results for the median parameter estimates reported
and set (2) shows the results for the 95% estimates for the persistence of the state processes),
Bollerslev, Xu, and Zhou (2015), and Koijen et al. (2010) (see Table IV). All returns and volatilities
are shown in percent, so a value of 1.5 is a 1.5% annualized figure.

E(pt − dt) σ (pt − dt) E(Rm,t − Rf ,t) E(Rf ,t) σ (Rm,t) σ (Rf ,t)

Bansal and Yaron (2004)

Log-Lin 3.0105 0.1969 5.88 2.63 18.45 1.35
Global 3.0379 0.1946 5.79 2.63 18.35 1.34
Error 0.90 % 1.17% 1.67% 0.06% 0.54% 0.08%

Bansal, Kiku, and Yaron (2012)

Log-Lin 3.0414 0.2931 8.28 0.99 24.35 1.30
Global 3.2370 0.2402 7.30 1.11 23.76 1.28
Error 6.04% 22.02% 13.49% 10.34% 2.49% 1.32%

Schorfheide, Song, and Yaron (2018) (1)

Log-Lin 3.2853 0.2704 4.52 1.74 16.21 0.57
Global 3.3580 0.2557 4.27 1.75 15.59 0.57
Error 2.17% 5.78 % 5.87% 0.13% 4.01% 0.17%

Schorfheide, Song, and Yaron (2018) (2)

Log-Lin 2.5943 0.8748 10.08 −0.02 16.12 0.91
Global 3.3365 0.7841 5.93 0.92 14.29 0.54
Error 22.25% 11.57 % 70.07% 102.49% 12.76% 67.29%

Bollerslev, Xu, and Zhou (2015)

Log-Lin 2.7479 0.2737 8.88 1.18 18.29 1.56
Global 2.8222 0.2835 8.49 1.19 17.92 1.55
Error 2.63% 3.56% 4.52% 0.71% 2.09% 0.36%

Koijen et al. (2010)

Log-Lin 3.1137 0.1808 5.85 1.40 12.53 1.18
Global 3.3514 0.1479 4.37 1.72 11.33 1.15
Error 7.09% 22.31% 33.99% 18.77% 10.53% 2.27%

data. Beeler and Campbell (2012) provide a detailed description of how to compute the annual
moments from monthly observations. A significant issue in the model is that the variance process
σ 2

t can, in fact, become negative. To overcome this problem, Bansal and Yaron (2004) replace all
negative realizations with very small but positive values. We proceed in the same way for both
methods to achieve consistent results. For the approximation interval of the projection methods, we
set the interval to be slightly larger than the maximum observation range for the long simulations.
As in the previous section, we increase the polynomial degree until the coefficients of the highest
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the log-linearized solutions and the global solutions obtained by the projection
approach, as well as the relative errors induced by the linearization.

We find that the log-linearization does a good job for the parameters in Bansal
and Yaron (2004), with a maximal error of 1.67% for the equity premium. For
the parameter set of Bansal, Kiku, and Yaron (2012), however, the results are
considerably worse. The log-linearization overstates the equity premium by
almost 100 bps. Further, it predicts a volatility of the log price-dividend ratio
of 0.2931 instead of 0.2402, which corresponds to a relative error of about 22%.
Simply put, the log-linearization produces a large equity premium and volatile
log price-dividend ratio even though the true model predictions seem to be
significantly smaller.

Beeler and Campbell (2012) argues that the predictability of excess returns
in the original long-run risk calibration of Bansal and Yaron (2004) is too low
compared to data, while at the same time it implies a counterfactually large
predictability of consumption and dividend growth. In response to this criti-
cism, Bansal, Kiku, and Yaron (2012) recalibrate the model to align it with
the predictability evidence in the data.14 Therefore, we next investigate the
influence of numerical errors on the predictability regressions in Bansal, Kiku,
and Yaron (2012). Table VI displays the R2 statistics and regression coefficients
from regressing cumulative log excess returns, consumption growth, and div-
idend growth on the lagged log price-dividend ratio. Statistics are shown for
the annualized time series over horizons of one, three, and five years. (Table EI
in Appendix E reports the corresponding results for the original calibration in
Bansal and Yaron (2004).)

We find that substantial portions of the increased predictability of excess
returns and the decreased predictability of dividend and consumption growth
stem solely from the approximation errors of the log-linearized solution for the
new calibration. For example, the log-linearization produces an R2 of 0.74%
for one-year excess returns and 3.38% for five-year excess returns. But the
correct statistics are 0.39% and 1.83%, respectively. So the log-linearization
overstates the predictability of returns in the model. For log consumption (div-
idend) growth the log-linearization produces values of 8.36% (10.47%) for one-
year predictions. The correct values are significantly larger, with one-year pre-
dictability of 12.15% for consumption and 15.44% for dividends. Hence, using
the global solutions amplifies the predictability concerns in the long-run risk
model emphasized by Beeler and Campbell (2012).

For the model of Schorfheide, Song, and Yaron (2018), we find that approx-
imation errors are in a reasonable range for the median parameter estimates
(results (1) in Table V). However, using the 95% quantile estimates for the per-
sistence parameters (results (2)), approximation errors increase dramatically,

order polynomial are close to zero. We double-check the accuracy of the solution by increasing the
approximation interval until the solutions do not change.

14 As the influence of the stochastic volatility channel compared to the long-run growth channel—
which directly affects consumption growth—is increased in Bansal, Kiku, and Yaron (2012), the
predictability of dividends and consumption is less pronounced in their calibration.
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Table VI
Predictability of Excess Returns, Consumption, and Dividends in the

Long-Run Risk Model of Bansal, Kiku, and Yaron (2012)
The table reports R2 statistics and regression coefficients from regressing cumulative log excess
returns, consumption growth, and dividend growth on the lagged log price-dividend ratio. Statistics
are shown for the annualized time series with one-, three-, and five-year horizons for the model of
Bansal, Kiku, and Yaron (2012). The table reports results for the log-linearized solution and the
global solution as well as the relative error of the log-linearization.

R2 β

1Y 3Y 5Y 1Y 3Y 5Y

∑H
h (rm,t+h − r f ,t+h) = α + β(pt − dt) + εt+H

Log-Lin 0.0074 0.0212 0.0338 −0.0625 −0.1848 −0.3029
Global 0.0039 0.0113 0.0183 −0.0547 −0.1627 −0.2673
Error 88.62% 86.29% 84.85% 14.12% 13.57% 13.30%

∑H
h (�ct+h) = α + β(pt − dt) + εt+H

Log-Lin 0.0836 0.0669 0.0531 0.0290 0.0589 0.0749
Global 0.1215 0.0967 0.0768 0.0427 0.0864 0.1099
Error 31.19% 30.87% 30.86% 32.02% 31.86% 31.85%

∑H
h (�dt+h) = α + β(pt − dt) + εt+H

Log-Lin 0.1047 0.0496 0.0364 0.1808 0.2562 0.2959
Global 0.1544 0.0727 0.0532 0.2679 0.3785 0.4368
Error 32.19% 31.77% 31.70% 32.51% 32.30% 32.27%

with an overestimation of the equity premium of more than 70%. Table EII
in Appendix E presents the corresponding results when only one of the 95%
estimates of the persistence parameters is used for the persistence parame-
ters ρ, νx, νc, and νd (instead of increasing all of the persistence parameters
together). We find that it is sufficient to increase either the persistence in xt,
ρ, or the persistence of the volatility of xt, νx, to obtain approximation errors
larger than 37%. For the persistence of the volatility of consumption and div-
idend growth, νc and νd, the errors are significantly smaller. This result is in
line with our findings from Section A, where we show that it is the combina-
tion of long-run risk and a persistent volatility that makes the model highly
nonlinear and not the stochastic volatility in consumption or dividends itself.
Schorfheide, Song, and Yaron (2018) use a Markov chain Monte Carlo approach
to estimate model parameters and make Bayesian inference about model pre-
dictions. This requires that the approximation be accurate not only for the
posterior median estimates, but also for other points of the parameter space at
which the likelihood is evaluated. Otherwise, the posterior median estimates
may also be biased. We find that using the 95% estimates for only one of the
parameters is sufficient to introduce significant approximation errors. Figure
E3 in Appendix E plots the errors in the equity premium as a function of the
persistence of long-run growth ρ. An increase in ρ of even 1% from 0.9872 to
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Panel C. Nominal YC (1-20)
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Figure 8. Real and nominal yield curve in the model of Koijen et al. (2010). The figure
plots the average annualized yield curves for real and nominal bonds in the model of Koijen et al.
(2010). Panel C shows the nominal yield curve only for 1- to 20-month bonds (extract of Panel B).

0.9971 increases the error in the equity premium from about 5% to almost
35%. This result suggests that the posterior median estimates are also biased.
We leave analyzing the quantitative impact of these errors on the parameter
estimates to future research.

In contrast, the model of Bollerslev, Xu, and Zhou (2015) only features a
persistent long-run risk process ρ = 0.988, while the persistence parameters of
the stochastic volatility and vol-of-vol factors are considerably lower (ν = 0.64
and ρq = 0.46). The resulting approximation errors are rather small, with a
maximum error of 4.52% for the equity premium. This result is not surprising
as the authors mention in their estimation that the stochastic volatility and
vol-of-vol factors influence the variance premium but have a negligible effect on
the price and return dynamics. As expected, we obtain almost the same results
when setting the volatility of the two factors to zero (φσ = φq = 0).

For the study of Koijen et al. (2010), we also find large errors, with a max-
imum error in the equity premium of 33.99% and an overestimation of the
premium of about 150 bps. Their calibration features a highly persistent long-
run risk process, ρ = 0.991, and highly persistent stochastic volatility of long-
run risk, νx = 0.996, which introduce large nonlinearities to the model. Koijen
et al. (2010) not only analyze equity markets but also price real and nominal
bonds to analyze the martingale component of the stochastic discount factor. In
Figure 8, we plot the real and nominal average annualized yield curves for
their model.

We find that the differences between the yield curves obtained by linearizing
the model and solving it accurately using the projection approach are small in
absolute value. However, the nominal yield curve from the linearized model
differs in its shape. While the true nominal yield curve is downward sloping in
the short run and upward sloping in the long run (see Panel C), this pattern does
not obtain when using log-linearization. So linearizing the model potentially
affects the shape of the real curve. The work of Bansal and Shaliastovich (2013)
sheds further light on this finding. In Figure 9, we plot the nominal yield curve
in their model.

Panel A shows the yield curve for the parameters in the original study.
We find that the difference between the log-linearized solution and the
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Panel A. ρ = 0.81
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Panel B. ρ = 0.9
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Panel C. ρ = 0.975
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Figure 9. Nominal yield curve in the model of Bansal and Shaliastovich (2013). The figure
plots the average annualized yield curve for nominal bonds in the model of Bansal and Shaliastovich
(2013).

projection solution is negligible with very small errors, and the shape of the
yield curve is also correct. As Bansal and Shaliastovich (2013) use bond data to
estimate the model, they find very low persistence in the long-run risk compo-
nent, with ρ = 0.81. This comparably low amount of persistence makes it dif-
ficult to match key moments for equity markets. For example, the annualized
equity premium for their parameter estimates is only 1.85%.15 We therefore
increase ρ in Panels B and C to 0.9 and 0.975 to increase the premium paid for
long-run consumption risk.16 We find that the errors in the yield curve grow
significantly as ρ approaches one. In fact, for ρ = 0.975, the log-linearization
predicts a downward-sloping nominal yield curve (dashed line) even though the
model actually produces an upward-sloping curve (solid line). Hence, relying
on the log-linearization to solve the model can lead to incorrect conclusions not
only about the magnitude of bond yields but also about the shape of the yield
curve.

In sum, we find that, while the log-linearization approach produces satis-
factory solutions for an analysis of the models in Bansal and Yaron (2004)
and Bollerslev, Xu, and Zhou (2015), the method performs rather poorly for the
models in Bansal, Kiku, and Yaron (2012), Schorfheide, Song, and Yaron (2018),
and Koijen et al. (2010). For these latter models, the poor approximations have
a strong effect on the model predictions for key financial statistics.

IV. Conclusion

In this paper, we analyze higher order effects in asset pricing models with
long-run risk. We show that, as the underlying exogenous processes become

15 The published version of Bansal and Shaliastovich (2013) does not provide a process for
dividend growth. For the purposes of comparison, we consider the specification that appears in their
2007 working paper. The process for �dt+1 is the same as in Koijen et al. (2010) (see equation 16).
As the 2007 working paper assumes a monthly decision interval and the published version from
2013 employs a quarterly interval, we adjust the volatility of dividends φd to match the volatility
of dividend growth in the data of approximately 11% annualized.

16 For ρ = 0.9 we obtain an equity premium of 4.72%, and for ρ = 0.975 we obtain a premium of
11.14%.
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increasingly persistent, nonlinear dynamics become increasingly important.
Since persistent processes are required to match key properties of asset prices,
such as the high equity premium and return predictability, these dynamics
prove to be important for the current leading long-run risk models. For these
models, use of the Campbell-Shiller (1988) log-linearization introduces signifi-
cant approximation errors in model moments. For example, for the calibration
of Bansal, Kiku, and Yaron (2012), log-linearization introduces an error of 22%
in the volatility of the log price-dividend ratio and overstates the amount of
return predictability by a factor of two. For highly persistent processes, as reg-
ularly used in the literature, the approximation errors in moments can exceed
70%. (Models with lower persistence, such as the original Bansal and Yaron
(2004) model or the vol-of-vol model of Bollerslev, Xu, and Zhou (2015), have
much smaller approximation errors.) The results for nominal bonds models
(such as Koijen et al. (2010) and Bansal and Shaliastovich (2013)) are particu-
larly interesting: for the high level of persistence necessary to explain the equity
premium, log-linear approximation can actually produce a downward-sloping
yield curve, when the true yield curve is upward sloping.

For many parameter combinations, the numerical errors introduced by the
Campbell-Shiller (1988) log-linearization are small. If the driving factors of the
economy are not highly persistent, or if the risk aversion of the representative
agent is low, these dynamics will have a negligible influence on equilibrium out-
comes. In these cases, log-linearization is a very attractive solution procedure.
However, the combination of highly persistent processes together with recur-
sive preferences and a risk aversion significantly larger than one—features
that the long-run risk model requires to be consistent with financial market
data—can introduce strong nonlinear dynamics to the model. We show that
these errors have a strong effect on key financial statistics in some recent asset
pricing studies, which in turn introduce a bias to the model parameters when
it comes to the estimation or calibration of the model. Therefore, when consid-
ering highly persistent processes, researchers should not rely on log-linearized
solutions alone, but rather should use more sophisticated methods that can
account for higher order dynamics.

Initial submission: December 5, 2016; Accepted: May 6, 2017
Editors: Stefan Nagel, Philip Bond, Amit Seru, and Wei Xiong

Appendix A: Computational Methods for Asset Pricing Models with
Recursive Preferences

One of the common approaches to solving asset pricing models is to log-
linearize the model around its steady state. A discussion of log-linearization
methods requires careful attention to several important differences among
some well-known approaches. Standard log-linearization methods as in Judd
(1996) or Collard and Juillard (2001) linearize around the deterministic steady
state of the model. In a deterministic model, recursive preferences collapse to
the case of CRRA preferences and hence risk aversion has no influence (as there
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is no risk). But if risk aversion has significant influence in the stochastic model,
linearizing around the deterministic steady state might not be the best choice.
Therefore, new techniques have been developed that linearize around the risky
steady state of the model (see, e.g., Juillard (2011), de Groot (2013), and Meyer-
Gohde (2014)).17 Another drawback of the standard log-linearization is that
the policies are independent of the volatility of the model (see Caldara et al.
(2012)). But as Bansal and Yaron (2004) point out, stochastic volatility is one
of the key features of the long-run risk model and essential for asset pricing
dynamics. Hence, a log-linear approximation for asset pricing models with
recursive preferences and stochastic volatility must account for both the risk
adjustment of the steady state and the effects of volatility. Bansal and Yaron
(2004) use a linearization technique based on the Campbell and Shiller (1988)
return approximation that meets these requirements and therefore has been
used extensively in solving asset pricing models with recursive preferences
(see Bollerslev, Tauchen, and Zhou (2009), Bansal, Kiku, and Yaron (2010),
Koijen et al. (2010), Constantinides and Ghosh (2011), Drechsler and Yaron
(2011), Bansal, Kiku, and Yaron (2012), Beeler and Campbell (2012), Bansal
and Shaliastovich (2013), Bansal et al. (2014), and Segal, Shaliastovich, and
Yaron (2015), among others).18 One reason for the popularity of this approach
is that it allows for approximate closed-form solutions for many different model
specifications, for example, when shocks to the economy are normal. The log-
linearization technique to solve asset pricing models with recursive preferences
is described below.

This study analyzes the log-linearized model solution with regard to the
influence of higher order dynamics on equilibrium outcomes that, by construc-
tion, cannot be captured by the log-linear approximation described below. For
CRRA preferences, closed-form solutions for various model specifications can
be computed. Unfortunately, for the general case of recursive preferences, to
the best of our knowledge there are no such solutions. We therefore need a
highly accurate solution method that is capable of correctly capturing higher
order features of asset returns. A convenient choice is projection methods,
which allow us to choose the approximation degree as well as the size of the
approximation interval to capture higher order dynamics driven by the tails
of the distribution.19 Projection methods are a general-purpose tool for solving
functional equations. They were first introduced by physicists and engineers

17 These authors define the risky steady state as the state in which, in absence of shocks in the
current period, the agent decides to stay in the current state while expecting shocks in the future
and knowing their probability distribution.

18 Another approach, proposed by Kogan and Uppal (2001) and used in Hansen et al. (2007) and
Hansen, Heaton, and Li (2008), is to linearize around the special case of unit elasticity of substitu-
tion ψ = 1, where the wealth-consumption ratio is constant. However most of the subsequent work
in the long-run risk literature focuses on the log-linearization used in Bansal and Yaron (2004), so
we concentrate on this particular approximation.

19 Similar results could potentially be obtained by using a perturbation method with a suffi-
ciently high order. But as we do not seek to find the best or most efficient solution method, but
rather we are interested in analyzing higher order dynamics, we choose to use the projection
approach.
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to solve partial differential equations, but they can be used to solve the types
of fixed-point equations that arise in economics. (See Judd (1992) for an intro-
duction or Chen, Cosimano, and Himonas (2014) for a brief overview of how to
apply projection methods to asset pricing models.) We now provide a detailed
description of projection methods and how they can be applied to solve the
equilibrium conditions (2) and (6).

A. Log-Linearization Applied to Asset Pricing Models with Recursive Prefer-
ences

Here, we provide a short sketch of the linearization method, as in Bansal
and Yaron (2004). For a detailed description of the method, see Eraker (2008)
and Eraker and Shaliastovich (2008). Assume that the log price-dividend ratio
of asset i, zi,t, is a linear function of the state variables

zi,t = A0,i + Ai yt, (A1)

where yt ∈ R
l is the state vector describing the economy and A0,i ∈ R

1 and
Ai ∈ R

l are the unknown linearization coefficients. The log return of the asset
i, ri,t+1, is then defined as

ri,t+1 = log(ezi,t+1 + 1) − zi,t +�di,t+1, (A2)

where �di,t+1 is the log dividend growth rate. Making use of the Campbell and
Shiller (1988) return approximation, one gets

ri,t+1 ≈ κi,0 + κi,1zi,t+1 − zi,t +�di,t+1, (A3)

with linearization constants

κi,1 = ez̄i

1 + ez̄i
, (A4)

κi,0 = − log
(
(1 − κi,1)1−κi,1κ

κi,1
i,1

)
(A5)

that depend only on the model-implied mean price-dividend ratio z̄i = A0,i +
Ai E(yt). Plugging the return approximation for the return on wealth (A3) into
equilibrium condition (6) yields

Et

[
eθ log δ+

(
θ− θ

ψ

)
�ct+1+θ(κw,0+κw,1zw,t+1−zw,t)

]
= 1. (A6)

The equilibrium condition now depends only on the state of the economy and
the linearization coefficients A0,i and Ai. As the equilibrium equation has to
hold for any realization of the state of the economy, one can collect the terms for
each state to obtain a square system of l + 1 equations. Once we have solved for
the return on wealth, one can apply the linearization approach to the general
pricing equation (2) to solve for the log price-dividend ratio of any asset i. For
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certain state processes, such as for processes with normal innovations as in
Bansal and Yaron (2004) or Bollerslev, Tauchen, and Zhou (2009), the expec-
tation can be evaluated analytically. This allows for approximate closed-form
solutions for the linearization coefficients that depend only on the lineariza-
tion constants κi,0 and κi,1. Eraker (2008), Eraker and Shaliastovich (2008),
and Drechsler and Yaron (2011) show how to generalize the approach to in-
clude general affine processes and jumps.

B. Projection Methods for Functional Equations

Projection methods (see Judd (1992) for an introduction or Chen, Cosimano,
and Himonas (2014) for a brief overview) are a general tool to solve functional
equations of the form

(Gz)(x) = 0, (A7)

where x resides in a (state) space X ⊂ R
l, l ≥ 1, and z is an unknown solution

function with domain X, so z : X → R
m. The operator G is a continuous mapping

between two function spaces. Note that solving equation (A7) requires finding
an element z in a function space, that is, in an infinite-dimensional vector
space.

The first central step of a projection method is to approximate the unknown
function z on its domain X using a linear combination of basis functions. For the
applications in this paper, it suffices to assume that the domain X is bounded
and that the basis functions are polynomials.20 For a set {�k}k∈{0,1,...,n} of chosen
basis functions, the approximation ẑ of z is

ẑ(x;α) =
n∑

k=0

αk�k(x), (A8)

where α = [α0, α1, . . . , αn] are unknown coefficients. Replacing the function z
in equation (A7) by its approximation ẑ, we can define the residual function
F̂(x;α) as the error in the original equation,

F̂(x;α) = (G ẑ)(x;α). (A9)

Instead of solving equation (A7) for the unknown function z, we now attempt
to choose coefficients α to make the residual F̂(x;α) zero. Note that instead of
finding an element in an infinite-dimensional vector space, we are now looking
for a vector in R

n+1. Obviously, this approximation step greatly simplifies the
mathematical problem.

20 For ease of notation, we demonstrate the projection approach using polynomials for the basis
functions. Alternative specifications include, for example, rational basis functions or piecewise
polynomial approximations. To solve models with high-dimensional state spaces like the model
of Schorfheide, Song, and Yaron (2018), we use cubic splines as there is an efficient and fast
implementation in Matlab.
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This problem is unlikely to have an exact solution, so the second central
step of a projection method is to impose certain conditions on the residual
function, the so-called “projection” conditions, to make the problem solvable.
In other words, the purpose of the projection conditions is to establish a set
of requirements that the coefficients α must satisfy. For a formulation of the
projection conditions, define a “weight function” (term) w(x) and a set of “test”
functions {gk(x)}n

k=0. We can then define an inner product between the residual
function F̂ and the test function gk,∫

X
F̂(x;α)gk(x)w(x)dx.

This inner product induces a norm on the function space X. Natural restrictions
for the coefficient vector α are now the projection conditions,∫

X
F̂(x;α)gk(x)w(x)dx = 0, k = 0,1, . . . ,n. (A10)

Observe that this system of equations imposes n + 1 conditions on the (n + 1)-
dimensional vector α. Different projection methods vary in the choice of the
weight function and the set of test functions. In this paper, we describe two
different projections, the collocation method and the Galerkin method.

The collocation method chooses n + 1 distinct nodes in the domain, {xk}n
k=0,

and uses Dirac delta functions as the test functions, gk = δ(x − xk). With a
weight term w(x) ≡ 1, the projection conditions (A10) simplify to

F̂(xk;α) = 0, k = 0,1, . . . ,n. (A11)

Simply put, the collocation method determines the coefficients in the approxi-
mation (A8) by solving the square system (A11) of nonlinear equations.

The Galerkin method uses the fact that Chebyshev polynomials are orthog-
onal on [−1,1] with respect to the inner product using the weight function
w(x) ≡ 1√

1−x2 . Hence, the Galerkin method uses the basis functions as the test
functions, gk(x) = �k(x), and the projection conditions (A10) become∫

X
F̂(x;α)�k(x)

1√
1 − x2

dx = 0, k = 0,1, . . . ,n. (A12)

Next, we show how to apply the general projection approach to solve the
equilibrium pricing equations (6) and (2).

C. Projection Methods Applied to Asset Pricing Models

To apply a projection method to the asset pricing model, we express the equi-
librium conditions as a functional equation of the type in (A7). For this purpose,
we need to choose an appropriate state space and perform the usual transfor-
mation from an equilibrium described by infinite sequences (with time index
t) to the equilibrium being described by functions of some state variable(s) x
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on a state space X. We denote the current state of the economy by x and the
state in the next period by x′. (For example, in the original model of Mehra
and Prescott (1985), the state x is log consumption growth and X ⊂ R

1; in the
model of Bansal and Yaron (2004), the state x consists of the long-run mean
of consumption growth (denoted by xt in that paper) and the variance of con-
sumption growth (denoted by σ 2

t ), so X ⊂ R
2.) We assume that the probability

distribution of next period’s state x′ conditional on the current state x is defined
by density fx.

We solve the model in two steps. In the first step, we use the projection
method to solve the wealth-Euler equation (6) to obtain the return on wealth.
Once the return on wealth is known, then we proceed to the second step and can
solve for any asset return by applying the projection approach to equation (2).
In the first step, write equation (6) in state-space representation as

E
[
exp

(
θ log δ − θ

ψ
�c(x′|x) + θrw(x′|x)

)∣∣∣∣ x
]

= 1, ∀x, (A13)

where lower case letters denote logs of variables and �c(x′|x) = c(x′) − c(x). We
write the model in logs because the function we solve for is the log wealth-
consumption ratio zw(x) = log( W (x)

C(x) ). Next, we write the state-dependent log
return of the aggregate consumption claim as

rw(x′|x) = log
(

W(x′)
W(x) − C(x)

)
= log

(
W (x′)
C(x′)

W (x)
C(x) − 1

× C(x′)
C(x)

)

= zw(x′) − log(ezw(x) − 1) +�c(x′|x). (A14)

Inserting the last term in equation (A13) yields

E
[
exp

(
θ

(
log δ +

(
1− 1

ψ

)
�c(x′|x) + zw(x′)−log(ezw(x)−1)

))
−1

∣∣∣∣ x
]

= 0, ∀x.

(A15)

Equivalently,

0 =
∫

X

[
exp

(
θ

(
log δ +

(
1 − 1

ψ

)
�c(x′|x) + zw(x′) − log(ezw(x) − 1)

))
− 1

]
d fx,

(A16)

which is a functional equation of the form (A7) that allows us to apply the
projection approach.

The unknown solution function to this equilibrium condition, zw, is an ele-
ment of a function space that is an infinite-dimensional vector space. A key
feature of every projection method is that one approximates the solution func-
tion zw by an element from a finite-dimensional space. We use the approxima-
tion ẑw(x;αw) = ∑n

k=0 αw,k�k(x), where {�k}k∈{0,1,...,n} is a set of chosen (known)
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basis functions and αw = [αw,0, αw,1, . . . , αw,n] are unknown coefficients. Replac-
ing the exact solution zw(x) by the approximation ẑw(x;αw) leads us to the
residual function F̂w for the rearranged wealth-Euler equation (A16), which is
defined by

F̂w(x;αw) (A17)

=
∫

X

[
exp

(
θ

(
log δ +

(
1 − 1

ψ

)
�c(x′|x) + ẑw(x′) − log(eẑw(x) − 1)

))
− 1

]
d fx.

We can determine values for the unknown solution coefficients αw by imposing
a projection condition on the residual term F̂w(x;αw). In this paper, we employ
two such projection conditions, the collocation method and the Galerkin method
(see earlier). The values for the coefficients αw determine the state-dependent
wealth-consumption ratio ẑw(x;αw), which in turn leads to the (approximate)
return function of the aggregate consumption claim, r̂w(x′|x;αw) = ẑw(x′;αw) −
log(eẑw(x;αw) − 1) +�c(x′|x).

With r̂w(x′|x;αw) at hand, we can now develop an approach to compute the
return of any asset i using equation (2). Analogous to the first step, we solve
for the log price-dividend ratio zi(x) = log( P(x)

D(x) ) and rewrite the state-dependent
log return of asset i as

ri(x′|x) = log
(

Pi(x′) + Di(x′)
Pi(x)

)
= log

( Pi (x′)
Di (x′) + 1

Pi (x)
Di (x)

× Di(x′)
Di(x)

)

= log
(
ezi (x′) + 1

)
− zi(x) +�di(x′|x). (A18)

Writing the Euler equation (2) in state-space representation and formulating
it in logs yields

E
[
exp

(
θ log δ − θ

ψ
�c(x′|x) + (θ − 1)rw(x′|x) + ri(x′|x)

)∣∣∣∣ x
]

= 1. (A19)

Substituting the return expressions (A14) and (A18) into this equation and
replacing the log price-dividend ratio zi(x) = pi(x) − di(x) by its approximation
ẑi(x;αi) = ∑n

k=0 αi,k�k(x) leads to the residual function

F̂i(x;αi) =
∫

X

[
exp

(
θ log δ − θ

ψ
�c(x′|x) + (θ − 1)r̂w(x′|x;αw)

+ log(eẑi (x′;αi) + 1) − ẑi(x;αi) +�di(x′|x)
)

− 1
]

d fx. (A20)

Recall that the coefficients αw and thus the function r̂w(x′|x;αw) have been com-
puted previously. Therefore, we can now apply one of the projection conditions
to solve for the unknown vector αi.

In sum, we apply the projection method twice. In the first step, we ap-
proximate the log wealth-consumption ratio ẑw(x;αw) by applying the projec-
tions on the residual function of the wealth-Euler equation (A17). Once αw is
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known, the projections can be applied to equation (A20) to solve for the price-
dividend ratio ẑi(x;αi) of any asset i. Formally, the algorithm can be described as
follows.

Algorithm. Solving Asset Pricing Models with Recursive Preferences.

Initialization. Define the state space X ⊂ R
l; choose the functional forms for

ẑw(x;αw) and ẑi(x;αi) as well as the projection method.

Step 1. Use the wealth–Euler equation (6) together with the approximated
log wealth–consumption ratio ẑw(x;αw) and the definition of the return equa-
tion (A14) to derive the residual function for the return on wealth

F̂w(x;αw) =
∫

X

[
exp

(
θ

(
log δ +

(
1 − 1

ψ

)
�c(x′|x) + ẑw(x′) − log(eẑw (x) − 1)

))
− 1

]
d fx .

Compute the unknown solution coefficients αw by imposing the projections on
F̂w(x;αw).

Step 2. Use the solution for the wealth–consumption ratio ẑw(x;αw) and the
Euler equation (2) for asset i together with the approximated log price–
dividend ratio ẑi(x;αi) and the definition of the return equation (A18) to derive
the residual function for asset i,

F̂i(x;αi) =
∫

X

[
exp

(
θ log δ − θ

ψ
�c(x′|x) + (θ − 1)r̂w(x′|x;αw)

+ log
(
eẑi (x′;αi) + 1

)
− ẑi(x;αi) +�di(x′|x)

)
− 1

]
d fx

Compute the unknown solution coefficients αi by imposing the projections on
F̂i(x;αi).

Evaluation. Choose a set of evaluation nodes X
e = {xe

j : 1 ≤ j ≤ me} ⊂ X and
compute approximation errors in the residual function of the wealth portfolio
and the residual function of asset i. If the errors do not satisfy a predefined
error bound, start over at Initialization and change the number of approxi-
mation nodes or the degree of the basis functions.

To implement the algorithm, we need to specify additional algorithmic details
such as the choice of basis functions and the integration technique.

D. Algorithmic Ingredients

In the Initialization step of the algorithm mentioned above, we need to choose
a set of basis functions for the polynomial approximation, a projection method,
and a set of nodes. To simplify the presentation, we describe the necessary
choices for a one-dimensional state space approximated over an interval X =
[xmin, xmax]. We approximate the solution functions zw and zi using Chebyshev
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polynomials (of the first kind) (see Judd (1998)). We obtain the Chebyshev
polynomials via the recursive relationship

T0(ξ ) = 1, T1(ξ ) = ξ, Tk+1(ξ ) = 2ξTk(ξ ) − Tk−1(ξ ),

with Tk : [−1,1] → R. Since we need to approximate functions on the domain
X and the Chebyshev polynomials are defined on the interval [−1,1], we need
to transform the argument for the polynomials. The basis functions for the
approximate solutions ẑw(x;αw) and ẑi(x;αi) are given by

�k(x) = Tk

(
2
(

x − xmin

xmax − xmin

)
− 1

)
(A21)

for k = 0,1, . . . ,n.
In this paper, we only show the results using the collocation method but

we verified the solutions using the Galerkin approach. The application of a
projection method requires a set of nodes, X = {xj : 0 ≤ j ≤ m} ⊂ X; we choose
the m+ 1 zeros of the Chebyshev polynomial Tm+1. These points are called
Chebyshev nodes,

ξ j = cos
(

2 j + 1
2m+ 2

π

)
, j = 0,1, . . . ,m.

Since all Chebyshev nodes are in the interval [−1,1], we need to transform
them to obtain nodes in the state space X. This transformation is

xj = xmin + xmax − xmin

2
(1 + ξ j), j = 0,1, . . . ,m.

For the collocation method, the number of basis functions, n + 1, must be iden-
tical to the number of approximation nodes, m+ 1, and so m = n. In Step 1 (and
Step 2, if applicable), we must solve the projection conditions involving the
residual function. The residual functions defined in equations (A17) and (A20)
contain a conditional expectations operator, which also requires numerical cal-
culations. The underlying exogenous processes in the models we consider are
normally distributed, and so we apply Gauss-Hermite quadrature to calculate
expectations.

The collocation approach leads to a square system of nonlinear equations,
which can be solved with a standard nonlinear equation solver. The Galerkin
projection is slightly more complex and uses integral operators as projection
conditions; these in turn can be accurately approximated by Gauss-Chebyshev
quadrature.

For the Evaluation step, we use me >> mequally spaced evaluation nodes in
X to evaluate the errors in the residual function. In particular, for asset i we
compute the root mean squared Euler error (RMSE) and maximum absolute
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Euler error (MAE) in the residual function (A20). These errors are

RMSEi =
√√√√ 1

me

me∑
j=1

F̂i

(
xe

j |αi

)2
, (A22)

MAEi = max
j=1,2,...,me

∣∣∣F̂i
(
xe

j |αi
)∣∣∣ , (A23)

respectively, with

xe
j = xmin + xmax − xmin

me − 1
( j − 1), j = 1, . . . ,me. (A24)

Appendix B: Computational Details and Accuracy of the Projection
Method

All of the results in the paper are computed using Matlab. We use the solver
“fmincon” with the SQP algorithm. Since we have to solve a system of nonlinear
equations for the projection approach and not an optimization problem, this
is implemented by minimizing a constant subject to the nonlinear constraints
from the system of equations. This procedure has proven to be far more efficient
and robust than the simple use of “fsolve.” For the high-dimensional models
of Schorfheide, Song, and Yaron (2018) and Koijen et al. (2010), we use cubic
splines with not-a-knot end conditions instead of Chebyshev polynomials due
to the faster implementation in Matlab.

Table BI demonstrates the accuracy of the projection approach. We consider
the long-run risk model of Bansal and Yaron (2004) with constant volatility,
where there exist closed-form solutions for the case of CRRA preferences (see
de Groot (2015)). In the case of recursive preferences, we determine the correct
solution using the projection approach with a very large degree and state space.
(We use nσ = 50 and increase the degree until the highest order coefficient is
close to zero. We double check the solution by using the discretization method of
Tauchen and Hussey (1991) with a very large number of discretization nodes.)
We report errors in the mean and volatility of the wealth-consumption ratio
for the log-linearization, the collocation projection, as well as the discretization
method of Tauchen and Hussey (1991) for different numbers of discretization
nodes.21 Another class of methods popular in macroeconomics is perturbation
methods (see, e.g., Caldara et al. (2012)). de Groot (2015) compares these meth-
ods to the analytical solutions and finds that they perform worse than even the
log-linearization for long-run risk models, so we do not consider them further.

We find that, for the calibration with ρ = 0.95, a first-order approxima-
tion with an approximation interval of nσ = 1 standard deviation around the

21 We report the results when solving the Euler equation for wealth. Alternatively, we could
solve the fixed-point equation for utility. The results using this alternative approach are almost
identical—the coefficients differ by less than 10−12.
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Table BI
Accuracy of the Projection Method: Model Moments

The table reports the mean wealth-consumption ratio for the long-run risk model of Bansal and
Yaron (2004) with constant volatility (equations (7) with σt = σ̄ ∀ t). Results are shown for the log-
linearization, the projection, as well as the discretization by Tauchen and Hussey (1991) with the
extension of Flodén (2008) that performs better for highly persistent processes. For the projection
method, results are shown for three different degrees n, where the approximation interval is set
up nσ standard deviations around the unconditional mean of the long-run risk process xt. For the
discretization method, results are shown for three numbers of approximation nodes nD. The table
also reports the relative error of the solutions; in the case of γ = 1/ψ the closed-form solution is
taken from de Groot (2015); in the case of γ �= 1/ψ we compute the accurate solution by solving
the model using the discretization method with a very large number of discretization nodes or
equivalently the projection method with a very large degree and state space. We use the same
calibration of Bansal and Yaron (2004) with δ = 0.9989, μc = 0.0015, σ̄ = 0.0078, and φx = 0.044.

Closed-F. Log-Lin Projection Discretization

n = 1 n = 4 n = 16
nσ = 1 nσ = 4 nσ = 32 nD = 5 nD = 10 nD = 50

Panel A: ψ = 1.5, γ = 1/ψ

ρ = 0.95
E( W

C ) 1,681.20 1,681.16 1,681.18 1,681.20 1,681.20 1,670.59 1,671.43 1,671.71
Error 0 2.11e-5 1.19e-5 2.61e-8 2.60e-8 0.0063 0.0058 0.0056
std( W

C ) 12.1815 12.1812 12.1813 12.1815 12.1815 11.8154 11.8348 12.1120
Error 0 2.20e-5 1.27e-5 2.65e-8 2.64e-8 0.0301 0.0285 0.0057

ρ = 0.99
E( W

C ) 1,868.36 1,862.93 1,865.54 1,868.36 1,868.36 3,492.27 2,134.01 1,856.55
Error 0 0.0029 0.0015 1.21e-7 7.65e-11 0.8692 0.1422 0.0063
std( W

C ) 144.14 143.65 143.86 144.14 144.14 2046.97 388.35 143.17
Error 0 0.0034 0.0020 1.17e-7 8.17e-11 13.2010 1.6942 0.0067

Panel B: ψ = 1.5, γ = 10

ρ = 0.95
E( W

C ) – 1,314.39 1,314.59 1,314.61 1,314.61 1,532.25 1,514.25 1,508.08
Error – 1.66e-4 1.51e-5 4.37e-11 2.12e-12 0.1655 0.1518 0.1472
std( W

C ) – 9.4941 9.4956 9.4956 9.4956 10.2019 10.1502 10.3674
Error 0 1.49e-4 2.37e-6 3.10e-11 2.58e-12 0.0744 0.0689 0.0918

ρ = 0.99
E( W

C ) – 517.13 518.97 529.39 529.39 869.23 653.99 570.65
Error – 0.0231 0.0196 1.43e-9 4.91e-11 0.6419 0.2353 0.0779
std( W

C ) – 35.2376 35.3660 35.5695 35.5695 117.2323 59.5289 37.6206
Error 0 0.0093 0.0057 3.49e-10 1.56e-12 2.2959 0.6736 0.0577

unconditional mean of xt provides a very accurate solution with an approxima-
tion error of 1.51e-5 for E( W

C ) and 2.37e-6 for std( W
C ) for the case with recursive

utility and γ = 10. For the high persistence case with ρ = 0.99, a larger de-
gree is required, with a degree-four polynomial sufficient to compute a highly
accurate solution.

In Table BII we report corresponding Euler errors in the pricing equation
of the wealth-consumption ratio (6). In this exercise, we evaluate the pricing
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Table BII
Accuracy of the Projection Method: Euler Errors

The table reports the MAE as well as the RMSE for the long-run risk model of Bansal and Yaron
(2004) with constant volatility (equations (7) with σt = σ̄ ∀ t). Results are shown for the log-
linearization and the projection approach. For the projection method, results are shown for three
different degrees n, where the approximation interval is set up nσ standard deviations around
the unconditional mean of the long-run risk process xt. Euler errors are computed by evaluating
the pricing equation of the wealth-consumption ratio (6) at 10,000 equally spaced nodes on ±6
standard deviations around the unconditional mean of xt. We use the same calibration of Bansal
and Yaron (2004) with δ = 0.9989, μc = 0.0015, σ̄ = 0.0078, and φx = 0.044.

Closed-F. Log-Lin Projection

n = 1 n = 4 n = 16
nσ = 1 nσ = 4 nσ = 32

Panel A: ψ = 1.5, γ = 1/ψ

ρ = 0.95
MAE 0 5.12e-7 5.07e-7 2.53e-11 1.61e-11
RMSE 0 2.25e-7 2.22e-7 1.45e-11 1.57e-11

ρ = 0.99
MAE 0 6.58e-5 6.49e-5 1.28e-10 9.97e-14
RMSE 0 2.57e-5 2.51e-5 6.56e-11 5.61e-14

Panel B: ψ = 1.5, γ = 10

ρ = 0.95
MAE – 2.06e-5 1.74e-5 2.40e-11 9.54e-14
RMSE – 1.00e-5 7.60e-6 5.71e-12 2.67e-14

ρ = 0.99
MAE – 0.0051 0.0048 4.16e-9 5.76-12
RMSE – 0.0020 0.0019 8.82e-10 3.72-12

equation at 10,000 equally spaced nodes on ±6 standard deviations around
the unconditional mean of xt and compute both the MAE and RMSE. Results
are reported for the two continuous methods, that is, for log-linearization and
projection, for which these errors can be computed. We observe similar patterns
as for the model moments. The Euler errors for the projection method with a
degree-four polynomial are consistently below 4e-9. The Euler errors of the
log-linearization are rather small for the low persistence cases but increase
significantly for high persistence and high risk aversion—the calibration that
is most often used in modern asset pricing models as shown in this paper.
Overall, we find that the projection method provides highly accurate solutions
for all specifications considered in this example.

Appendix C: Closed-Form Solutions for ψ = 1

For the special case of an EIS of one, the (log) stochastic discount factor in
the long-run risk model is linear. Below we provide the derivations for the
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closed-form solutions for the standard long-run risk model with stochastic
volatility (7). For ψ = 1, indirect utility Vt is given by

Vt = C1−δ
t

(
EtV

1−γ
t+1

) δ
1−γ

(C1)

(see Tallarini (2000)). Define vct = log Vt
Ct

to obtain

vct = δ

1 − γ
log Et

(
e(1−γ )(vct+1+�ct+1)

)
. (C2)

Guess and verify that vct = a + bxt + cσ 2
t :

a + bxt + cσ 2
t = δ

1 − γ
log Et

(
e(1−γ )(a+bxt+1+cσ 2

t+1)
)

+ δ
(
μc + xt + 0.5(1 − γ )φ2

c σ
2
t

)
= δa + δbρxt + 0.5δ(1 − γ )b2φ2

xσ
2
t + δcσ̄ 2(1 − ν) + δcνσ 2

t

+0.5δ(1 − γ )c2φ2
σ + δμc + δxt + 0.5δ(1 − γ )φ2

c σ
2
t .

Solving for a, b, and c yields

b = δ

1 − δρ
,

c = 0.5δ(1 − γ )(φ2
c + b2φ2

x )
1 − δν

,

a = δμc + δcσ̄ 2(1 − ν) + 0.5δ(1 − γ )c2φ2
σ

1 − δ
.

The stochastic discount factor for the special case of ψ = 1 is given by

Mt+1 = δ

(
Ct+1

Ct

)−1 V 1−γ
t+1

Et(V
1−γ
t+1 )

(C3)

(see Tallarini (2000)). Reformulating in terms of vct yields

Mt+1 = δ

(
Ct+1

Ct

)−1 e(1−γ )(vct+1+�ct+1)

Et(e(1−γ )(vct+1+�ct+1))
,

= δ

(
Ct+1

Ct

)−γ e(1−γ )vct+1

e
1−γ
δ
vct

. (C4)

So the log stochastic discount factor mt+1 = log Mt+1 is a linear function of the
state variables given by

mt+1 = log δ − γ�ct+1 + (1 − γ )vct+1 − 1 − γ

δ
vct. (C5)
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Appendix D: The Volatility-of-Volatility Factor

In this section, we analyze how log-linearization affects model outcomes
when the model dynamics are described by a square root process as, for exam-
ple, in Bollerslev, Tauchen, and Zhou (2009), Tauchen (2011), and Bollerslev,
Xu, and Zhou (2015). To do so, we use the parsimonious model formulation as
in Bollerslev, Tauchen, and Zhou (2009), who take the basic model setup (11)
without the long-run risk factor, so φx = 0, and add vol-of-vol modeled by a
square root process qt:

σ 2
t+1 = σ̄ 2(1 − ν) + νσ 2

t + √
qtησ,t+1,

qt+1 = μq(1 − ρq) + ρqqt + φq
√

qtηq,t+1

×ησ,t+1, ηq,t+1 ∼ i.i.d. N(0,1).

As Tauchen (2011) notes, care is needed because qt can become negative in sim-
ulations if the volatility is too large compared to the mean of the process. The
common approach in the literature is to assume a reflecting barrier at zero by
replacing negative values with very small positive values to ensure positivity
of the process (this approach is also used for the stochastic volatility process
in the original Bansal and Yaron (2004) study and in many subsequent pa-
pers). However, to compute model solutions, the assumption of a nontruncated
distribution for the log-linearization is commonly used.

Take, for example, the calibration of Bollerslev, Tauchen, and Zhou (2009)
given by δ = 0.997, γ = 10, ψ = 1.5, μc = 0.0015, ν = 0.978, σ̄ 2 = 0.00782, and
μq = 1e-6. Figure D1 shows model outcomes for CRRA preferences withψ = 1.5
(Panel A) and the corresponding Epstein-Zin case with γ = 10 (Panel B) for
various persistence and volatility parameters of the vol-of-vol process ρq and
φq. The black numbers show the true mean wealth-consumption ratio under
the assumption of a reflecting boundary for qt at zero. Gray values are the
results from log-linearization under the assumption of a standard nontruncated
normal distribution. Black circles denote convergence of the projection and
the log-linearization approaches. Black diamonds denote cases in which the
log-linearization yields a complex solution while the model solution using a
truncated normal distribution is real. We find that, depending on the degree
of risk aversion, using the standard log-linearization technique can lead to
complex solutions. For example, this is the case for the calibration in Bollerslev,
Tauchen, and Zhou (2009) with ρq = 0.8 and φq = 1e-3.22

So what factors are the determinants of the complexity of the linearized
solution? The square root specification of qt implies that the coefficient of qt
is determined by a quadratic equation and hence may have more than one

22 Bollerslev, Tauchen, and Zhou (2009) provide a real solution by assuming a fixed value for the
linearization constant κ = 0.9. However, this approach does not give a solution to the model but
rather ex ante fixes the mean value of the price-dividend ratio and hence significantly biases the
model outcome.
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Panel A. ψ = 1.5, γ = 2/3
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Panel B. ψ = 1.5, γ = 10
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Figure D1. Sensitivity analysis and existence results in the vol-of-vol model. The figure
shows the convergence properties as well as the mean wealth-consumption ratio for the vol-of-vol
model of Bollerslev, Tauchen, and Zhou (2009). The results are reported for a range of persistence
parameters ρq and volatility parameters φq. Panel A depicts the case of CRRA utility with ψ = 1.5,
while Panel B depicts the corresponding case with recursive utility and γ = 10. Black numbers
show the mean wealth-consumption ratio obtained by the projection approach using a reflecting
barrier at zero and gray numbers show the values obtained by the standard log-linearization
with normal shocks. Black circles denote convergence of the projection and the log-linearization
approaches. Black diamonds denote cases in which the log-linearization yields a complex solution
while the model solution using a truncated normal distribution is real. The model parameters are
given by δ = 0.997, μc = 0.0015, ν = 0.978, σ̄ 2 = 0.00782, and μq = 1e-6.
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Figure D2. Analysis of square root term in the vol-of-vol model. The figure plots the real
and complex parts of the square root term that determines Aq as a function of the risk aversion γ
for the vol-of-vol model of Bollerslev, Tauchen, and Zhou (2009). The model parameters are given
by δ = 0.997, μc = 0.0015, ν = 0.978, σ̄ 2 = 0.00782, μq = 1e-6, ρq = 0.8, and φq = 1 × 10−3.
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solution. The log-linear approximation of the log wealth-consumption ratio zw,t
has the form

zw,t = A0 + Aσ σ 2
t + Aqqt, (D1)

with the linearization coefficients (see Appendix A for the derivation) given
by

Aσ = (1 − γ )2

2θ (1 − k1ν)
,

A0 =
log δ + (1 − 1

ψ
)μc + k0 + k1

[
Aσ σ̄ 2(1 − ν) + Aqμq(1 − ρq)

]
(1 − k1)

,

Aq =
1 − k1ρq±

√
(1 − k1ρq)2 − θ2k4

1φ
2
q A2

σ

θk2
1φ

2
q

. (D2)

We find that the coefficient of the vol–of–vol factor Aq does indeed have two
solutions. As Bollerslev, Tauchen, and Zhou (2009) show in their paper by
the no arbitrage argument, the negative term is the economically meaningful
root and the positive solution can be neglected. Complexity of the solution
is determined by the term inside the square root in equation (D2) given by
(1 − k1ρq)2 − θ2k4

1φ
2
q A2

σ . So how does this term depend on the model parameters?
Figure D2 plots the values of the square root term as a function of the risk
aversion γ . In line with the results above, we find that, for small γ , the solution
is well behaved with only a real and no imaginary part. However, if we increase
γ , θ becomes significantly larger (it goes from −3 for γ = 2 to −27 for γ = 10)
and hence the real part of the term decreases. At a certain threshold (about
4.4 in this example), the term hits zero after which the solution contains a
significant imaginary part. Panel B of Figure D1 above shows that, for large
values of the persistence or large values of the volatility of the vol-of-vol process,
solutions are complex. Summarizing, using standard log-linearization with
normal shocks to solve models with a large risk aversion and a persistent
square root process can yield complex solutions, even if real solutions under
the assumption of a reflecting barrier exist. Hence, when solving such models,
either log-linearization with the assumption of a truncated normal distribution
or more sophisticated methods like the projection approach described in this
paper should be used.

Appendix E: Additional Tables and Graphs

Figure 6 in Section B plots isolines (black solid lines) for the absolute errors
in the log wealth-consumption ratio (left panel) and the log price-dividend ratio
(right panel) of the log-linearization as a function of the states xt and σ 2

t for the
model with stochastic volatility in xt. Figures E1 and E2 show the correspond-
ing errors in the first and second derivatives of the log wealth-consumption and
price-dividend ratio. Again, the errors in the derivatives of the price-dividend
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Figure E1. Absolute approximation errors in the first derivatives of the log wealth-
consumption and log price-dividend ratio of the log-linearization. The figure plots isolines
for the absolute errors in the first derivative of the log wealth-consumption ratio (left panel)
and the log price-dividend ratio (right panel) with respect to the states xt and σ 2

t of the log-
linearization (black solid lines). The dark gray area shows the range of two unconditional standard
deviations of the state processes. For xt the area is computed using a given two-unconditional-
standard-deviation shock in σ 2

t . The light gray area shows the corresponding range for four un-
conditional standard deviations. Results are shown for the standard long-run risk model (specifi-
cation (7)). Parameters: δ = 0.9989, γ = 10, ψ = 1.5, μ = 0.0015, φc = 1, φx = 0.038, ρ = 0.975, σ̄ =
0.0072, ν = 0.999, φσ = 2.8e-6, μd = 0.0015,
 = 2.5, φd = 5.96, and φd,c = 2.6.

ratio are significantly larger than the errors in the derivatives of the wealth-
consumption ratio, and the errors increase monotonically with σ 2

t . We find that
the errors in the derivatives with respect to σ 2

t are especially large, with errors
as large as 3,000 for the first derivative of the price-dividend ratio. Also, we find
that the second derivatives in the model are substantially different from zero
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Panel A. ∂wt−ct
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Figure E2. Absolute approximation errors in the second derivatives of the log wealth-
consumption and log price-dividend ratio of the log-linearization. The figure plots isolines
for the absolute errors in the second derivative of the log wealth-consumption ratio (left panel)
and the log price-dividend ratio (right panel) with respect to the states xt and σ 2

t of the log-
linearization (black solid lines). The dark gray area shows the range of two unconditional standard
deviations of the state processes. For xt the area is computed using a given two-unconditional-
standard-deviation shock in σ 2

t . The light gray area shows the corresponding range for four un-
conditional standard deviations. Results are shown for the standard long-run risk model (specifi-
cation (7)). Parameters: δ = 0.9989, γ = 10, ψ = 1.5, μ = 0.0015, φc = 1, φx = 0.038, ρ = 0.975, σ̄ =
0.0072, ν = 0.999, φσ = 2.8e-6, μd = 0.0015,
 = 2.5, φd = 5.96, and φd,c = 2.6.
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Figure E3. Relative errors in the equity premium in Schorfheide, Song, and Yaron
(2018). The figure plots the relative errors in the equity premium as a function of the persis-
tence of the long-run growth rate ρ in the model of Schorfheide, Song, and Yaron (2018). Results
are shown for the median parameter estimates (see Table IV).

Table EI
Predictability of Excess Returns, Consumption, and Dividends in the

Long-Run Risk Model of Bansal and Yaron (2004)
The table presents R2 statistics and regression coefficients from regressing cumulative log excess
returns, consumption growth, and dividend growth on the lagged log price-dividend ratio. Statistics
are shown for the annualized time series with one-, three-, and five-year horizons for the model of
Bansal and Yaron (2004). The table reports results for the log-linearized solution and the global
solution as well as for the relative error of the log-linearization.

R2 β

1Y 3Y 5Y 1Y 3Y 5Y

∑H
h (rm,t+h − r f ,t+h) = α + β(pt − dt) + εt+H

Log-Lin 0.0083 0.0205 0.0297 −0.0453 −0.1386 −0.2188
Global 0.0077 0.0197 0.0291 −0.0411 −0.1319 −0.2069
Error 6.86% 4.18% 2.27% 10.14% 5.12% 5.75%

∑H
h (�ct+h) = α + β(pt − dt) + εt+H

Log-Lin 0.3157 0.3241 0.2596 0.0857 0.2024 0.2507
Global 0.3167 0.3245 0.2582 0.0866 0.2049 0.2530
Error 0.33% 0.11% 0.53% 1.06% 1.23% 0.91%

∑H
h (�dt+h) = α + β(pt − dt) + εt+H

Log-Lin 0.3990 0.3128 0.2405 0.3834 0.7340 0.8912
Global 0.4017 0.3140 0.2428 0.3888 0.7428 0.9007
Error 0.66% 0.37% 0.96% 1.39% 1.18% 1.05%
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Table EII
Annualized Moments and Errors in Schorfheide,

Song, and Yaron (2018)
The table reports the mean and the standard deviation of the annualized log price-dividend ratio,
the annualized market over the risk-free return, and the risk-free rate. Results obtained by the
log-linearized solution and the global solution as well as the relative error of the log-linearization
are shown for the median estimates of Schorfheide, Song, and Yaron (2018) (see Table IV) except
for the persistence parameters, where the 95% quantile estimates are used (for each set of results,
one of the persistence values is increased). All returns and volatilities are shown in percentages,
so a value of 1.5 is a 1.5% annualized figure.

E(pt − dt) σ (pt − dt) E(Rm,t − Rf ,t) E(Rf ,t) σ (Rm,t) σ (Rf ,t)

Median estimates with ρ = 0.9995

Log-Lin 2.9396 0.7198 6.72 0.83 13.43 0.72
Global 3.4447 0.6758 4.66 1.23 12.49 0.50
Error 14.66 % 6.52% 44.22% 33.64% 7.53% 43.34%

Median estimates with νx = 0.9988

Log-Lin 2.5670 0.4600 9.75 1.00 20.30 0.77
Global 2.9217 0.3349 7.29 1.17 17.29 0.75
Error 12.14% 37.34% 33.69% 14.56% 17.40% 2.96%

Median estimates with νc = 0.9958

Log-Lin 3.2775 0.2706 4.60 1.71 16.26 0.57
Global 3.3510 0.2554 4.34 1.71 15.62 0.57
Error 2.19% 5.92 % 5.90% 0.14% 4.10% 0.18%

Median estimates with νd = 0.9841

Log-Lin 3.2913 0.2715 4.59 1.74 16.80 0.57
Global 3.3641 0.2570 4.34 1.75 16.20 0.57
Error 2.16% 5.66 % 5.76% 0.13% 3.70% 0.17%

(which is the value assumed by the log-linearization), and they are es-
pecially large (more than 105!) for the second derivative with respect to σ 2

t ,
which is another reason for the large approximation errors reported in Table I.

Table VI in Section G displays the R2 statistics and regression coefficients
from regressing cumulative log excess returns, consumption growth, and divi-
dend growth on the lagged log price-dividend ratio. Table EI reports the corre-
sponding results for the predictability regressions for the calibration in Bansal
and Yaron (2004). We find that the errors of the log-linearized solution are
much smaller for the calibration in Bansal and Yaron (2004) than for the more
recent calibration in Bansal, Kiku, and Yaron (2012).

Finally, we report results on the model of Schorfheide, Song, and Yaron
(2018). Table EII provides additional results on annualized moments and the
numerical errors of the log-linearized solutions. These results complement
those reported in Table V in Section G. Figure E3 plots the errors in the equity
premium as a function of the persistence of long-run growth ρ. Even a small
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increase in ρ of 1% from 0.9872 to 0.9971 increases the error in the equity
premium from about 5% to almost 35%.
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Caldara, Dario, Jesús Fernández-Villaverde, Juan F. Rubio-Ramı́rez, and Wen Yao, 2012, Com-
puting DSGE models with recursive preferences and stochastic volatility, Review of Economic
Dynamics 15, 188–206.

Campbell, John Y., and Robert J. Shiller, 1988, The dividend-price ratio and expectations of future
dividends and discount factors, Review of Financial Studies 1, 195–228.

Chen, Yu, Thomas F. Cosimano, and Alex A. Himonas, 2014, On formulating and solving portfolio
decision and asset pricing problems, in Karl Schmedders, and Kenneth L. Judd, eds.: Handbook
of Computational Economics, Volume 3 (North-Holland, Elsevier, Amsterdam).

Collard, Fabrice, and Michel Juillard, 2001, Accuracy of stochastic perturbation methods: The case
of asset pricing models, Journal of Economic Dynamics and Control 25, 979–999.

Collin-Dufresne, Pierre, Michael Johannes, and Lars A. Lochstoer, 2016, Parameter learning in
general equilibrium: The asset pricing implications, American Economic Review 106, 664–698.

Constantinides, George M., and Anisha Ghosh, 2011, Asset pricing tests with long-run risks in
consumption growth, Review of Asset Pricing Studies 1, 96–136.

Croce, Mariano M., Martin Lettau, and Sydney C. Ludvigson, 2015, Investor information, long-run
risk, and the term structure of equity, Review of Financial Studies 28, 706–742.

de Groot, Oliver, 2013, Computing the risky steady state of DSGE models, Economics Letters 120,
566–569.

de Groot, Oliver, 2015, Solving asset pricing models with stochastic volatility, Journal of Economic
Dynamics and Control 52, 308–321.

Dew-Becker, Ian, Stefano Giglio, Anh Le, and Marius Rodriguez, 2017, The price of variance risk,
Journal of Financial Economics 123, 225–250.

Drechsler, Itamar, and Amir Yaron, 2011, What’s vol got to do with it, Review of Financial Studies
24, 1–45.

Epstein, Larry G., and Stanley E. Zin, 1989, Substitution, risk aversion and the temporal behavior
of consumption and asset returns: A theoretical framework, Econometrica 57, 937–969.

Eraker, Bjørn, 2008, Affine general equilibrium models, Management Science 54, 2068–2080.
Eraker, Bjørn, and Ivan Shaliastovich, 2008, An equilibrium guide to designing affine pricing

models, Mathematical Finance 18, 519–543.
Flodén, Martin, 2008, A note on the accuracy of Markov-Chain approximations to highly persistent

AR(1) processes, Economics Letters 99, 516–520.

http://dx.doi.org/10.1216/jiea/1181075664
http://dx.doi.org/10.1257/aer.100.2.542
http://dx.doi.org/10.1561/104.00000005
http://dx.doi.org/10.1111/jofi.12110
http://dx.doi.org/10.1093/rfs/hhs108
http://dx.doi.org/10.1111/j.1540-6261.2004.00670.x
http://dx.doi.org/10.1561/104.00000004
http://dx.doi.org/10.1093/rfs/hhp008
http://dx.doi.org/10.1016/j.jeconom.2015.02.031
http://dx.doi.org/10.1016/j.red.2011.10.001
http://dx.doi.org/10.1016/j.red.2011.10.001
http://dx.doi.org/10.1093/rfs/1.3.195
http://dx.doi.org/10.1016/S0165-1889(00)00064-6
http://dx.doi.org/10.1257/aer.20130392
http://dx.doi.org/10.1093/rapstu/rar004
http://dx.doi.org/10.1093/rfs/hhu084
http://dx.doi.org/10.1016/j.econlet.2013.06.025
http://dx.doi.org/10.1016/j.jedc.2015.01.001
http://dx.doi.org/10.1016/j.jedc.2015.01.001
http://dx.doi.org/10.1016/j.jfineco.2016.04.003
http://dx.doi.org/10.1093/rfs/hhq085
http://dx.doi.org/10.2307/1913778
http://dx.doi.org/10.1287/mnsc.1070.0796
http://dx.doi.org/10.1111/j.1467-9965.2008.00346.x


Higher Order Effects in Asset Pricing Models with Long-Run Risks 1111

Grossman, Sanford J., and Robert J. Shiller, 1981, The determinants of the variability of stock
market prices, American Economic Review 71, 222–227.

Hansen, Lars P., John Heaton, Junghoon Lee, and Nikolai Roussanov, 2007, Intertemporal sub-
stitution and risk aversion, in James J. Heckman, and Edward E. Leamer, eds.: Handbook of
Econometrics, Volume 6 (Elsevier, Amsterdam, London).

Hansen, Lars P., John C. Heaton, and Nan Li, 2008, Consumption strikes back? Measuring long
run risk, Journal of Political Economy 116, 260–302.

Hansen, Lars P., and Kenneth J. Singleton, 1982, Generalized instrumental variables estimation
of nonlinear rational expectations models, Econometrica 50, 1269–1286.

Judd, Kenneth L., 1992, Projection methods for solving aggregate growth models, Journal of
Economic Theory 58, 410–452.

Judd, Kenneth L., 1996, Approximation, perturbation, and projection methods in economic analy-
sis, in Hans M. Amman, David A. Kendrick, and John Rust, eds.: Handbook of Computational
Economics, Volume 1 (Elsevier, Amstedam).

Judd, Kenneth L., 1998, Numerical Methods in Economics (The MIT Press: Cambridge, MA).
Juillard, Michel, 2011, Local approximation of DSGE models around the risky steady state, Work-

ing paper, IDEAS, available at: http://ideas.repec.org/p/ter/wpaper/0087.html.
Kaltenbrunner, Georg, and Lars A. Lochstoer, 2010, Long-run risk through consumption smooth-

ing, Review of Financial Studies 23, 3190–3224.
Kogan, Leonid, and Raman Uppal, 2001, Risk aversion and optimal portfolio policies

in partial and general equilibrium economies, Working paper, NBER, available at:
http://www.nber.org/papers/w8609.

Koijen, Ralph S. J., Hanno Lustig, Stijn Van Nieuwerburgh, and Adrien Verdelhan, 2010, Long-
run risk, the wealth-consumption ratio, and the temporal pricing of risk, American Economic
Review 100, 552–556.

Mehra, Rajnish, and Edward C. Prescott, 1985, The equity premium: A puzzle, Journal of Monetary
Economics 15, 145–161.

Meyer-Gohde, Alexander, 2014, Risky linear approximations, Working paper, IDEAS, available at:
http://ideas.repec.org/p/hum/wpaper/sfb649dp2014-034.html.

Pohl, Walter, Karl Schmedders, and Ole Wilms, 2015, Higher-order effects in asset-pricing mod-
els with long-run risks, Working paper, IDEAS, available at: https://ideas.repec.org/p/red/
sed016/306.html.

Schorfheide, Frank, Dongho Song, and Amir Yaron, 2018, Identifying long-run risks: A Bayesian
mixed-frequency approach, Econometrica (Forthcoming).

Segal, Gill, Ivan Shaliastovich, and Amir Yaron, 2015, Good and bad uncertainty: Macroeconomic
and financial market implications, Journal of Financial Economics 117, 369–397.

Tallarini, Thomas D., 2000, Risk-sensitive real business cycles, Journal of Monetary Economics
45, 507–532.

Tauchen, George, 2011, Stochastic volatility in general equilibrium, Quarterly Journal of Finance
1, 707–731.

Tauchen, George, and Robert Hussey, 1991, Quadrature-based methods for obtaining approximate
solutions to nonlinear asset pricing models, Econometrica 59, 317–396.

Weil, Philippe, 1990, Nonexpected utility in macroeconomics, Quarterly Journal of Economics 105,
29–42.

Zhou, Guofu, and Yingzi Zhu, 2015, Macroeconomic volatilities and long-run risks of asset prices,
Management Science 61, 413–430.

Supporting Information

Additional Supporting Information may be found in the online version of this
article at the publisher’s website:

Replication code.

http://dx.doi.org/10.1086/588200
http://dx.doi.org/10.2307/1911873
http://dx.doi.org/10.1016/0022-0531(92)90061-L
http://dx.doi.org/10.1016/0022-0531(92)90061-L
http://ideas.repec.org/p/ter/wpaper/0087.html
http://dx.doi.org/10.1093/rfs/hhq033
http://www.nber.org/papers/w8609
http://dx.doi.org/10.1257/aer.100.2.552
http://dx.doi.org/10.1257/aer.100.2.552
http://dx.doi.org/10.1016/0304-3932(85)90061-3
http://dx.doi.org/10.1016/0304-3932(85)90061-3
http://ideas.repec.org/p/hum/wpaper/sfb649dp2014-034.html
https://ideas.repec.org/p/red/sed016/306.html
https://ideas.repec.org/p/red/sed016/306.html
http://dx.doi.org/10.1016/j.jfineco.2015.05.004
http://dx.doi.org/10.1016/S0304-3932(00)00012-X
http://dx.doi.org/10.1142/S2010139211000237
http://dx.doi.org/10.2307/2937817
http://dx.doi.org/10.1287/mnsc.2014.1962

