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Abstract

« Managed portfolios that take less risk when volatility is high produce large
alphas, increase Sharpe ratios, and produce large utility gains for mean-
variance investors.

« \We document this for the market, value, momentum, profitability, return on
equity, investment, and betting-against-beta factors, as well as the currency
carry trade.

 \olatility timing increases Sharpe ratios because changes in volatility are not
offset by proportional changes in expected returns.

 Our strategy Is contrary to conventional wisdom because it takes relatively less
risk in recessions. This rules out typical risk-based explanations and is a
challenge to structural models of time-varying expected returns.
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Abstract

« Managed portfolios that take less risk when volatility is high produce large
alphas, increase Sharpe ratios, and produce large utility gains for mean-
variance investors.

* \We document this for the market, value, momentum, profitability, return on

equity, investment, and betting-against-beta factors, as well as the currency
carry trade.

 \olatility timing increases Sharpe ratios because changes in volatility are not
offset by proportional changes in expected returns.
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volatility-managed Single-Factor Portfolios

Volatility-managed portfolios 0% # 56 2arindl &

volatility-managed mean-variance efficient MVE frontier (or multifactor)Portfolios
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_ volatility-managed “combination” strategies I




background

" Average Return n Standard Deviation For the market portfolio, our strategy

10 . | produces an alpha of 4.9%, and an
overall 25% increase in the buy-and-hold

Sharpe ratio.

20

10

We group months by the previous month’s
LowVol 2 3 4 HighVol "TTowvol 2 3 4 Highval realized volatility and plot average returns,
volatility , and the mean-variance trade-off

o M o =]} Qo

: e 05— T over the subsequent month
03 A mean-variance investor should time
) 05 | volatility, that is, take more risk when the
2 o mean-variance trade-off is attractive
. . (volatility is Iow) and take less risk when
Low Vol 2 3 4 High Vol Low Vol 2 3 4 High Vol P P T T SRS f <SS I T . e
The motivation for this strategy comes from the portfolio problem of a mean-

g variance investor who Is deciding how much to invest in a risky portfolio. B
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frame

« Section|  Documents our main empirical results

 Section Il  Understanding the Profitability of Volatility Timing
« Section Il Theoretical Framework

 Section IV General Equilibrium Implications

» SectionVV Concludes.
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A. Data Description

daily and monthly data(Mkt, SMB, HML, MOM, RMW, and CMA)
» Kenneth French’s website

|A and ROE

* Hou, Xue, and Zhang(2014)

BAB factor

 Frazzini and Pedersen (2014)

currency returns

 Lustig, Roussanov, and Verdelhan (2011)
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B. Portfolio Formation
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C. Empirical Methodology
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(1)

Mkt® |
MktRF 0.61

(0.05)
SMB
HML
Mom
RMW
CMA
Carry
ROE

15

IA
BAB
Alpha () @ 1 osth

(1.56) ]
N 1,065
R? 0.37 0
RMSE 51.39

P 05

Alpha («) 5.45 4

(1.56)

Cumulative performance

One-Year Rolling Average Returns
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D. Single-Factor
Portfolios

The worst time periods
for our strategy do not
overlap much with the
worst market crashes.



Panel A: Mean-Variance Efficient Portfolios (Full Sample)
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(1)

(2)

(3) (4)

(5)

(6) (7)

f;+1 - 62(

Mkt FF3 FF3Mom  FF5 FF5 Mom HXZ HXZ Mom
Alpha («) 4.86 4.99 4.04 1.34 2.01 2.32 2,51
(1.56) (1.00) (0.57) (0.32) (0.39) (0.38) (0.44)
Observations 1,065 1,065 1,060 621 621 219D D19
R? 0.37 0.22 0.25 0.42 0.40 0.46 0.43
RMSE 51.39  34.50 20.27 8.28 9.11 8.80 9.55
Original Sharpe 0.42 0.52 0.98 1.19 1.34 1.57 1.57
Vol-Managed Sharpe .51 0.69 1.09 1.20 1.42 1.69 1.73
Appraisal Ratio 0.50 0.69 0.56 0.77 0.91 0.91
Panel B: Subsample Analysis
(1) (2) (3) (4) (5) (6) (7)
Mkt FF3 FF3 Mom FF5 FF5 Mom HXZ HXZ Mom
a: 1926-1955 8.11 1.94 2.45
(3.09) (0.92) (0.74)
o« 1956-1985 2.06 0.99 2.54 0.13 0.71 0.77 1.00
(2.82) (1.43) (1.16) (0.43) (0.67) (0.39) (0.51)
a: 1986-2015 4.22 5.66 498 1.88 2.65 3.03 3.24
(1.66) (1.74) (0.95) (0.41) (0.47) (0.50) (0.57)

E. Multifactor Portfolios

MVE.o ¢ MVE
= sz (e (5)

t t+1

MVE alpha is the right measure of
expansion in the mean-variance frontier.

If volatility were constant over a
particular period, our strategy would
be identical to the buy-and-hold
strategy and alphas would be zero
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I1. Understanding the Profitability of Volatility Timing

A. Business Cycle Risk

B. Transaction Costs

C. Leverage Constraints

D. Contrasting with Cross-Sectional Low-Risk Anomalies

E. Volatility Comovement

F. Horizon Effects
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(1) (2) (3) (4) (5) (6) (7) (8)
Mkt” HML* Mom? RMW* CMA" FX° ROE” IA”

ftﬂ = o +u'11rec._r + ﬁﬁﬁ + B1 1rec._r X ft + &

MlktRF 0.83
(0.08)
MktRF x1,.. —-0.51 .
(0.10) « The results in the table show that,
HML oo across the board for all factors, our
HML x1re: | oy strategies take less risk during
Mom o4 recessions and thus have lower betas
Mo Lrec ~053 during recessions.(%0&|3)
(0.08) . .
RMW 0.63 « Thus, our strategies decrease risk
(0.10) : :
RMW x1,.. 008 exposure In NBER recessions.
(0.13)
CMA 0.77 ) ) o i
- (0.06) * This makes it difficult for a business
* 1ree -041 . .
(0.07) cycle risk story to explain our facts.
Carry oo However, we still review several
Carry e b specific risk-based stories below.
ROE 0.74
(0.08)
ROE x1,,, -0.42
(0.11)
IA 0.77
(0.07)
IA %10 —0.39
(0.08)

Observations 1,065
R? 0.43

1,065 1,060 621 621 362 575 575
0.37 0.43
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B.Transaction Costs (for the market portfolio ) @ o 2 B4R <

o After Trading Costs FF

RE

w Description | Aw| E[R] o 1bps 10bps 14bps| Break Even
# Realized variance 0.73 9.47% 4.86% 4.77% 3.98% 3.63% 56bps
:
o Realized vol 0.38 9.84% 3.85% 3.80% 3.39% 3.21% 84bps
E[R‘IVEJ Expected variance 0.37 947% 3.30% 3.26% 2.86% 2.68% 74bps
TS |
nﬁn(R;E,l) No leverage 0.16 5.61% 2.12% 2.10% 1.93% 1.85% 110bps

t
min(—.1.5) 50% leverage 0.16 7.18% 3.10% 3.08% 291% 2.83% 161bps

RVZ

We report the average absolute change in monthly weights, expected return, and alpha of
each strategy before transaction costs. We then report the alpha when including various
transaction cost assumptions.

We do not report results for all factors, since we do not have good measures of transaction
costs for implementing the original factors, much less their volatility-managed portfolios.



C. Leverage Constraints

Panel A: Weights and Performance for Alternative Volatility-Managed Portfolios

Distribution of Weights w

wy Description o Sharpe Appraisal P50 P75 P90 P99
R‘l,vz Realized variance 4.86 0.52 0.34 093 159 264 6.39
‘ (1.56)
L Realized volatility ~ 3.30 | 0.53 123 161 208 3.36
‘ (1.02)
L Expected variance  3.85 0.51 0.30 1.11  1.71 238 4.58
IRV,
(1.36)
min(—==, 1) No leverage 2.12 0.52 0.30 093 1 1 1
RV;
(0.71)
min( R;E ,1.5) 50% leverage 3.10 0.53 0.33 093 1.5 1.5 1.5
‘ (0.98)
Panel B: Embedded Leverage Using Options: 1986—-2012
Vol Timing with Embedded Leverage
Buy and Hold Vol Timing Calls Calls + Puts
Sharpe Ratio 0.39 0.59 0.54 0.60
o - 4.03 5.90 6.67
s.ela) - (1.81) (3.01) (2.86)
B - 0.53 0.59 0.59
Appraisal Ratio - 0.44 0.39 0.46

" ” w7

@ L % 7 2
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D ) Shanxi University of Finance and Economics
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We consider various strategies that
capture volatility timing but reduce
trading activity, including using standard
deviation instead of variance, using
expected rather than realized variance,
and two strategies that cap the strategy’s
leverage at 1 and 1.5.

In Panel B of Table V, we compare the
strategy implemented with options to the
strategy implemented with leverage.

The Alphas and SR are very similar, which
suggests that our results are not due to
leverage constraints, even for investors with
relatively low risk-aversion.



D. Contrasting with Cross-Sectional Low-Risk Anomalies ""‘ TMHRRZT <
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« The first strategy is risk parity, we keep the relative weights of all factors constant
and only increase or decrease overall risk exposure based on total volatility.

« The second strategy is the betting-against-beta (BAB) factor

Table VI
Time-Series Alphas Controlling for Risk Parity Factors

In this table, we run time-series regressions of each volatility-managed factor on the nonmanaged
factor plus a risk parity factor based on Asness, Frazzini, and Pedersen (2012). The risk parity

factor is given by| RP;;1 = b; f;+1, where b; ; = zlff{fﬁ and [ is a vector of pricing factors. Volatil-
i 1/0¢
(1) (2) (3) (4) (5) (6) (7) (8)
MKkt FF3 FF3 Mom FF5 FF5 Mom HXZ HXZ Mom = BAB°
Alpha («) 4.86 5.00 4.09 1.32 1.97 2.03 2.38 5.67
(1.56)  (1.00) (0.57) (0.31) (0.40) (0.32) (0.44) (0.98)
N 1,065 1,065 1,060 621 621 575 575 996
R? 0.37 0.23 0.26 0.42 0.40 0.50 0.44 0.33
RMSE 51.39 34.30 20.25 8.279 9.108 8.497 9.455 29.73

Thus, our time-series volatility-managed portfolios are distinct from the low-beta anomaly documented

I in the cross-section. _
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E. Volatility Comovement @
'&’*'a,hmw‘f‘r

Normalizing by Common Volatility

In this table, we construct volatility-managed strategies for each factor using the first principal
component of realized variance across all factors. Each factor is thus normalized by the same
variable, in contrast to our main results, where each factor is normalized by that factor’s past
realized variance. We run time-series regressions of each managed factor on the nonmanaged
factor. Standard errors are in parentheses and adjust for heteroskedastiticy.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Mkt® SMB? HML?’ Mom” RMW? CMA? FX7 ROE? IA?
Alpha (@) 4.22 0.24 3.09 11.00 1.16 —0.22 —1.28 4.21 1.24
(1.49) (0.83)  (0.96) (1.70) (0.81) (0.66) 1.21)] (1.00) (0.61)
N 1,061 1,061 1,061 1,060 622 622 362 576 576
R? 0.42 0.45 0.36 0.33 0.44 0.51 0.64 0.47 0.56

RMSE 49.31 28.74 33.87 46.57 19.11 16.67 18.49 22.13 15.06

Shanxi University of Finance and Economics




F. Horizon Effects
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Given the increase in variance but only
small and persistent increase in expected
return,

The lower panel shows that it is optimal
for the investor to reduce his portfolio
exposure by 50% on impact because of
an unfavorable risk-return trade-off.

The portfolio share is consistently below
0 for roughly 12 months after the shock.
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N o 1 excess returns from buying at the end of
o Erench o Erench month T and holding until the end of
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N PR 0.8} 4
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o~ /\ S0 Y b N |+ Alphas are statistically significant for
e RN —j 0ol R'_—ax____f _ Iong_er h_oldlng p_erlods but gradually
) ol _ decline in magnitude.
« For example, for the market portfolio,
Fama-French + Momentum 1 __ Fama-French + Momentum alphas are statistically different from
osl | zero (at the 10% confidence level) for
B~ ' 06) _ up to 18 months. This same pattern
N - L :
A N NI ! N - holds for the two MVE portfolios we
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I11. Theoretical Framework

1.We start by making the intuitive point that our alphas are proportional to the
covariance between variance and the factor price of risk.
2.\We then impose more structure to derive aggregate pricing implications.

ng = (f} —+ Ltt)dt -+ U’det
dR? = F‘tdt + i(th — ?‘tdf)

« of & time-series regression of the volatility-managed portfolio excess return
dR{ — r,dt on the original portfolio excess return dR; — r;dt 1s given by

Using the fact that E[dR; —r.dt]/dt = cE[%], B = 5, and cov(“‘ 0?) =
Elp:] — E[“—*]E[Jf] we obtain a relation between alpha and the dynamlcs of
2 16

the price of risk 1, /o;

C
C

- Mt 2 f‘tc—rl—:l: A9 ﬁ+15
o = cov( gjgt)E[crf]‘ O't(f)

O¢

R AR S .S



WM MURZ

" Shanxi University of Finance an d Economics

2
& = (1 + E°(f) ) cov(we, ft) — E(f1) cov(we, f7)

Var(f) Var(fy)
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2.\We then impose more structure to derive aggregate pricing implications

ity of F

O R TR (o[ YR s oA YR 1ITAYe | NS assumption says that unconditional exposures
OIS CINEU [N @ ER S MYl {0 these factors contain all relevant information to
variation driven by volatility . price the static portfolios R, but one may also need

LetdR = [dR. ... dRy]'be a vector o Information on the price of risk dynamics to

uft and covariance matrix . The em properly prlce dynamlc strategles of these assets
that exposures to a few facturs summarize
larger cross-section of assets and strategies captured b*g.r dR;. We fnrmahze our

interpretation of this literature as follows:

ASSUMPTION 1: Let return factors dF = |[dF;, ..., dFy], with dynamics given
by : and X |span the unconditional mean-variance frontier for static portfo-
lios of dR = [dR;dFy] and the conditional mean-variance frontier for dynamic
portfolios of dR. Define the process Il,(y;) as

dnr(]’r)
Hr(}’z)

Then there exists a constant price of risk vector y* such that E [d(l'[;(y”)wﬁ)] =
0 holds for any static weights w, and there is a y* process for which

Eld(TT(y)w: R)] = 0 holds for any dynamic weights w;.

= —rfdt —_ }’;(de —_— Eg [de]) (9)



2.\We then impose more structure to derive aggregate [2EEET U8

Consider a simple example in which the CAPM holds, and the market portfolio return

* In this section we show how our vo
to systematic risk factors, recover t
variation driven by volatility .

given by dF; has constant expected returns and variance. Consider a individual stock with

returns dR; = (?‘fdf + ],tR’f)df + ﬁR (de — E; [dpf]) + U'R’deR’f, where dBR’f shocks are not

priced. We have that the volatility-managed alpha is

1
ﬂ’.R X —(C0o0 (U%q’f, 222) ’ (IA. 2)

RUE TOR,

Let dR = [dR;.....dRyN] be a vector o
nE and covariance matrix . The emp
that exposures to a few factnrs summa
larger cross-section of assets and strategi
interpretation of this literature as follows

which is positive (negative) if B > 0 (Br < 0), but CAPM alphas are always zero.

While volatility timing can “work” for any asset with positive expected returns for

which volatility is forecastable but does not predict returns, the alphas become economi-

ASSUMPTION 1: Let return factors dF =
by u; and X |spanj the unconditional me
lios of dR = [dR;dFy] and the conditional mean-variance frontier for dynamic
portfolios of dR. Define the process Il,(y;) as

Hr(]fr)

cally interesting when studying systematic factors.

= —rdt — Vr(de — E/[dF;]). (9)

Then there exists a constant price of risk vector y* such that E[d(l'[;(y”)wﬁ)] =
0 holds for any static weights w, and there is a y* process for which

E[d(TT(y/)w: R)] = 0 holds for any dynamic weights w;.



We focus on the case in which the factor covariance matrix is diagonal, 2 = diag ([014...07 ) i

(i.e., factors are uncorrelated), which empirically is a good approximation of the factors

we study.!? In fact, many of the factors are constructed to be nearly orthogonal through
y y y & &

double-sorting procedures. Given this structure, we can show how our strategy alphas

allow one to recover the component of the price of risk variation driven by volatility.

IMPLICATION 1: The factor i price of risk is y*, = =5 and y/* =

factor excess returns as ; = b%; + ¢, where we assume

= l[‘;” Decompose
E[§f|zf] — Kﬁ Let yf,t -

Ely*|0?] be the component of the price of risk variation driven by volatility,

and «; be factor i’s volatility-managed alpha. Then

. Elo?
Yie =Y + %Ja.i ( [J;'t] - 1) :

it

J, = (E[6/1E[ ] - 1)

(10)

and the process T1(y,”) is a valid Stochastic Discount Factor (SDF) for dR, and
volatility-managed strategies w(X%,), that is, E[d(IT,(y7 )w(Z,)R;)] = 0. 20

2UFormally, ¢ = '[r},,{t___f},it], and the strategies w(%;) must be adapted to the filtration generated by X,
self-financing, and satisfy E[fﬂT ||w(X4)Z¢||?dt] < oo (see Duffie (2010)).




- Now we show that the SDF I1(~{) prices all volatility-based strategies. We need to é E‘t (/! *
show that E [d (H;(’yt Jw (Ef)Rf):| = 0, which is equivalent to drl, ()

— —?‘:dt - }";{dF: — Er[sz])

nr(}"r)

E|d (k¥ )w(E)Ri) | = E[w(E0p,] — Ely{ (dF ~ Ef)w(Z)R (IA.5)

Using the fact that factors are on the conditional mean-variance frontier, it is sufficient
to show that the expression holds for the factors themselves. Furthermore, it is sufficient

to show that the pricing equation holds for each portfolio conditional on X information.

This yields
Eld(IT(7{)F)|[Z] = E[u|%] — E[v{ (dF; — E{[dF])dF;|Z] (IA. 6)
= DI+ E[G] — 7% (IA.7)
= DX+ E[G] — (b+ E[L,]Z (IA. 8)
= 0, (TA.9)

where in the last line we use the fact that 77, = E[v],[Z] = b+ E[(;]/ 0. This proves

D i-pication 1.
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IMPLICATION 1: The factor i price of risk is y*, = %’ and y} = =554 . Decompose TMRRS
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factor excess returns as p; = b%; + ¢, where we assume|E[¢| ;] = ¢| Let v, =

Ely*l0?] be the component of the price of risk variation driven by volatility,
and «; be factor i’s volatility-managed alpha. Then

_ Elo2
et (Pl ) 10

0; ¢

and the process T1:(y") is a valid Stochastic Discount Factor (SDF) for dR, and
volatility-managed strategies w(%,), that is, E[d(I1,(y7 )w(Z)R,)] = 0.20

Equation (10) shows how volatility-managed portfolio alphas allow us to reconstruct
the variation in the price of risk due to volatility. The volatility-implied price of risk has

two terms. The term " is the unconditional price of risk, the price of risk that prices

static portfolios of returns dR;. It is the term typically recovered in cross-sectional tests.

The second is due to volatility. It increases the price of risk when volatility is low, with

this sensitivity increasing in our strategy alpha. Thus, volatility-managed alphas allow

us to answer the question of how much compensation for risk moves as volatility moves.
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Tracking variation in the price of risk due to volatility can be important for pric-

ing. Specifically, II(7{) can price not only the original assets unconditionally, but also
volatility-based strategies of these assets.?! Thus, volatility-managed portfolios allow us
to get closer to the true price of risk process 7}, and as a result, closer to the unconditional
mean-variance frontier, a first-order economic object. In the Internet Appendix we show

how one can implement the risk adjustment embedded in model I1(v{) by adding our

volatility-managed portfolios as a factor.




We finish this section by providing a measure of how “close” Il(y”) gets Sy, ” -
to I1(y,") relative to the constant price of risk model Il(y“). Recognizing that *@“ L é E’t (/! y S <
E[d(yf) — dII(y)dR;] is the pricing error associated with using model b =’
when prices are consistent with a, it follows that the volatility of the difference
between models, D,_, = Var (dI1(y?) — dI(y})), provides an upper bound on
pricing error Sharpe ratios (see Hansen and Jagannathan (1991)). It is thus a

Shanxi University of Finance and Economics

natural measure of distance. For the single-factor case, we obtain SR, — \/ S RQM n (%)2,
2 ; )
Dy oy = (E) E[o?] J; 1, (11) appraisal ratio
C

Var(s) -

Dy s = ——, 12 = b¥; +
¢ E [U;afz] ( ) ;Hf t éf

Dy = (:) E[Jf ] Jg + m{c}a + 1). (13)

Equation (11) shows that the distance between models u and o grows with
alpha. In particular, it implies that the maximum excess Sharpe ratio decreases
proportionally with the strategy alpha when you move from the constant price
of risk model u« to the model o that incorporates variation in the price of risk
driven by volatility. This is similar in spirit to Nagel and Singleton (2011), who
derive general optimal managed portfolios based on conditioning information
to test unconditional models against. Analogously, equation (12) accounts for

variation in the expected return signal ¢; but ignores volatility information.
Equation (13) shows the total difference between the constant price of risk
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To have a sense of magnitudes, we assume that the market portfolio satisfies Assump-‘DE hEeMUERS
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tion 1 and plug in numbers for the market portfolio. Notice that D,,_, is the volatility-
managed market’s appraisal ratio squared, which measures the expansion of the MVE

frontier for the managed strategy. We measure all the quantities in (11) to (13) but Var({;),

which is tightly related to return predictability R?. We use the estimate from Campbell

and Thompson (2008), who obtain a number around 0.06.2 We obtain D,,_, = 0.33% =
variation in volatility can reduce squared pricing error Sharpe ratios by approximately
0.11/0.29=38%, compared with 0.06/0.29=21% for time-variation in expected returns,
with the large residual being due to the multiplicative interaction between them.

The above results show that accounting for time-variation in the price of risk driven

by volatility seems at least as important as, and perhaps even more important than, ac-

l counting for variation in the price of risk driven by expected returns. _
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A. Macrofinance Models K2 FLRAE I o SR
Alpha Appraisal Risk-Return Trade-Off AR ELEAR I EHEF 1Y .
* In these models, alphas are
Habits Data —> Habits Data > Habits Data > either near zero or negative on

average,

 The positive alphas we
document empirically imply
that this covariance is negative.

F
F

i<

Disasters Disasle Disasters
._L d L_ All models frequently generate

. return histories consistent with

Long run risk Long run risk Long run risk the weak risk-return trade-off
A‘L estimated in the data. However,
| W—
Intermediaries ‘ Intermediariis
| | I 04 o0 4 -0.2 0 0.2 _0

no model comes close to
-0.06 -0.04 -0.02 0 0.02 004 0.08 -, .| -6 -4 -2 0 2 4 8

}
P

reproducing our findings in
terms of alphas or appraisal
ratios.

Intermediaries

}

Kt o c

. _ . _ 2
four leading equilibrium asset pricing models Rkt 11 — Rf~t+1 =a+ VOt T €41 @ = —COv (?’ o} )
t

E[o]]
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V. General Equilibrium Implications D) o N~
B. What Could Explain Our Results?

The easiest, but least plausible, explanation 1s that investors’ »=*
risk is negatively related to Volatility . That iS, Investors choose sophisticated investors seem to
because they are less risk-averse during high-volatility periof” sell more quickly in response to
representative agent models, a plausible explanation Is that vo— increases in volatility in the 2008
about structural parameters might be priced differently than Crisis.
standard forms of risk (e.g, Veronesi(2000)).

One intuitive explanation for our results is that some investors are slow to trade. This
could explain why a sharp increase in realized volatility does not immediately lead to a
higher expected return in the data. This explanation is also consistent with our impulse
responses where expected returns rise slowly but the true expected volatility process
rises and mean-reverts quickly in response to a variance shock.

A final possibility is that the composition of shocks changes with volatility.
Quantitatively , Moreira and Muir (2016) show that, because discount rate shocks seem
to be very persistent in the data, even in the extreme case in which volatility is
completely driven by discount rate volatility , investors with plausible investment
I horizons can still benefit somewhat from volatility timing. e




V . Conclusion

« volatility-managed portfolios offer large risk-adjusted returns and are easy to
Implement in real time.

« Because volatility does not strongly forecast future returns, factor Sharpe ratios are
Improved by lowering risk exposure when volatility is high and increasing risk
exposure when volatility is low. Our strategy runs contrary to conventional
wisdom because it takes relatively less risk in recessions and crises yet still earns
high average returns.

« We analyze both portfolio choice and general equilibrium implications of our
findings. We find utility gains from volatility timing for mean-variance investors
of around 65%, which is much larger than utility gains from timing expected
returns.

 Furthermore, we show that our strategy performance is informative about the

dynamics of effective risk-aversion, a key object for theories of time-varying risk
premia.
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Abstract

« Using a comprehensive set of 103 equity strategies, we analyze the value of
volatility-managed portfolios for real-time investors.

 \olatility-managed portfolios do not systematically outperform their
corresponding unmanaged portfolios in direct comparisons.

 Consistent with Moreira and Muir (2017), volatility-managed portfolios tend
to exhibit significantly positive alphas in spanning regressions.

« However, the trading strategies implied by these regressions are not
Implementable in real time, and reasonable out-of-sample versions generally
earn lower certainty equivalent returns and Sharpe ratios than do simple
Investments in the original, unmanaged portfolios.

 This poor out-of-sample performance for volatility-managed portfolios stems
primarily from structural instability in the underlying spanning regressions.
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Background: Moreira and Muir (2017) find that the empirical success of volatility
management is a pervasive phenomenon. existing studies leave readers with the impression
that volatility-managed equity strategies routinely lead to improved performance.

In this paper, we assess whether volatility management is systematically advantageous for
Investors and place specific emphasis on real-time implementation.

contribution: Mbased on a substantially broader sample of 103 equity trading strategies,
we find no statistical or economic evidence that volatility-managed portfolios systematically
earn higher Sharpe ratios than their unmanaged counterparts do.

@we confirm that Moreira and Muir’s (2017)) finding of systematically positive spanning
regressions alphas for volatility-managed portfolios also holds in our extended sample. We
explore an array of reasonable out-of-sample versions of these “combination” strategies and
find that they typically underperform simple investments in the original, unscaled portfolios.
(3We provide evidence that this result is driven by substantial structural instability in the
underlying spanning regressions for these strategies.



LA EE R BRI RS

volatility-managed Single-Factor Portfolios

Volatility-managed portfolios

frame
N E MG HE

volatility-managed “combination” strategies

« Section 2 describes the data and introduces volatility-managed portfolios.
« Section 3 compares volatility-managed and original strategies. (single-factor)

« Section 4 contains our empirical tests on real-time strategies that combine volatility-

managed portfolios with their unscaled versions.

» Section 5 concludes.



Section 2 data

2.1. Data description
« 9 factors and 94 anomaly portfolios:
daily and monthly data on factor excess returns for nine equity factors

Identifies 94 anomaly variables, data from Center for Research in Security Prices (CRSP) Monthly and Daily
Stock Files, the Compustat Fundamentals Annual and Quarterly Files, and the Institutional Brokers Estimate
System (IBES) database. (we group them into the following eight categories based on the classification scheme
in Hou et al. (2015) : accruals, intangibles, investment, market, momentum, profitability, trading, and value.)

2.2. Construction of volatility-managed portfolios

[ —— 3)
t—1

L 22

67 = T2 (7" (4)

for=a+Bfi +&. (5)
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tablel : ,
hff; S(P;f sg»; covariance between excess returns for the two portfolios. To test the

null hypothesis of equal Sharpe ratios for portfolios i and j, we com-
pute the following Jobson and Korkie (1981) test statistic, which is

Panel A: Performance measy

Mean 7.80 2.57 4.8 , o2, . & il —& i
Standard deviation 1861 1112 12.1| asymptotically distributed as a standard normal: Zy = “‘T“"J‘ where
Sharpe ratio 0.42 0.23 0.4 B 4
A_l .-gz_lu.z_ -y lAEAE 1*2"2_11:'-“';'*2 . _
Panel B: Performance measures f 0 = T (2'{}.!' Hj 20’15}'{}.!-} + 2”‘5 U_j + 2 !u'j i ad H:'.j)‘ The test incor
Mean 9.55 0.86 4.6 porates the correction noted by Memmel (2003).
Standard deviation 18.61 11.12 12.1% OS50 T.71 0.7 5.03 8 2= Ta] TO. 71
Sharpe ratio 0.51 0.08 0.38 0.99 0.51 0.40 1.06 0.72 1.01

Panel C: Performance comparisons

Sharpe ratio difference 0.09 -0.15 -0.02 0.50 0.13 -0.13 0.32 —0.05 0.24
[0.30] [0.09] [0.86] [0.00] [0.29] [0.23] [0.01] [0.68] [0.01]

Panel D: Properties of volatility-managed factors

Correlation with original factor | 0.63 0.63 0.57 0.48 0.59 0.68 0.68 0.70 0.62 |
P (c*/é‘f_l ) 0.04 0.03 0.04 0.04 0.04 0.06 0.06 0.06 0.04
&g(c*/ﬁf_l) 0.96 0.81 1.02 1.01 1.11 0.97 1.08 0.96 1.00
ng(c*/c?f_l) 6.47 5.07 5.89 8.64 5.02 4.56 4,73 4.45 5.09

In five cases the volatility-managed factor earns a higher average return and Sharpe ratio than the original
strategy does, whereas the original factor outperforms in the remaining four cases. Three of the nine differences
are significantly positive, as the volatility-managed versions of MOM, ROE , and BAB achieve Sharpe ratio gains
by outperforming the original factors by 8.23%, 2.86%, and 2.58% per year.

The correlation coefficient between ROE and MOM (BAB) is 0.50 (0.26).
Although the median investment position for each of the dynamic portfolios is around one, the 99th percentile

I of required leverage exceeds 400% in each case and reaches as high as 864% for the momentum strategy. .



3. Direct comparisons

table2 Sharpe ratio difference
Sample Total ASR = 0 [Signif.] ASR < 0 [Signif.]
(1) (2) (3) (4)

Panel A: Combined sample
All trading strategies 103 53 [8] 50 [4]
Panel B: By category

Factors 9 53] 4 [0]
Anomaly portfolios 94 48 [5] 46 [4]

Panel C: By trading strategy type

Accruals 10 4 [0] 6 [0]
Intangibles 10 3 [0] 7 [0]
Investment 11 3 [0] 8|[1]
Market 1 1]0] 0|[0]
Momentum 9 9 [5] 0|[0]
Profitability 22 15([1] 7|[1]
Trading 21 11([1] 10([1]
Value 19 7([1] 12([1]

The results in Table 2 suggest that volatility-
managed portfolios do not systematically
outperform their original counterparts.

In Panel A, volatility management leads to
Improved and worsened performance at roughly
the same frequency.

Panel C reveals that the majority of the
significantly positive Sharpe ratio differences are
attributable to them nine momentum strategies.
Volatility management improves performance for
every momentum strategy, and five of the nine
performance differences are statistically significant
at the 5% level.

This group includes growth in book equity ,change in
sales less change in inventory,1/share price, and
long-term reversal (4D &2 F[%)

three strategies exhibit statistically significant outperformance: ROE,

BAB , and Loughran and Wellman ’s (2012) enterprise multiple.
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max U(a)=a'f1 — %anJa, (6) AR — ;E (12)
E
a= [iﬂ — %i-la, (7) AR? = SR(y?)? — SR(z*)?, (13)
o *\2 __ *32
. ACER = 2RV0) ZVSR(Z > (14)
[wc;} . (8)
w |‘1—2|_ -1 | xﬂ'f 1 = 1~
xt’ = ;Et— M- (15)
.1 b
z = f[ﬁ 1} (9) yt=x5{t(;t )-|—xt. (16)
t-1
% _ B B
Xy = g (10) ASR=5 ~ 5. (17)
ng (] —pP )
ACER = (ﬁf _ Z&f) _ (,aj e *J?-)_ (18)
. . ( c* ) i (11) 2 2
Ve =X — + X
"\,

Interpretation of a positive alpha from this test is that an investor who holds the ex
nntimal ecomhinatinn of the hanchmarle farctnre infrraacac har QRharna ratin hys addina a




4. Combination strateqies---4.2 in-sample tests

Factor

table3

MKT SMB HML MOM RMW CMA ROE 1A BAB
(1) (2) (3) (4) (5) (6) (7) (8) 9)
Panel A: Univariate regressions
Panel A.1: Regression results
Alpha, « (%) 4.63 -0.76 1.87 12.39 223 0.26 4,97 1.18 5.74
(3.08) (-0.87) (1.88) (7.31) (2.57) (0.39) (5.10) (1.83) (5.97)
Beta, 0.63 0.63 0.57 0.48 0.59 0.68 0.68 0.70 0.62
(11.32) (7.75) (7.65) (7.13) (7.10) (13.82) (11.12) (13.59) (12.97)
R? 0.40 0.40 0.33 0.23 0.34 0.46 0.46 0.50 0.38
Appraisal ratio, AR 0.32 -0.09 0.19 0.86 0.36 0.05 0.77 0.26 0.68
Panel A.2; Ex post optimization parameters
Scaling parameter, c* 10.33 2.63 2.95 4.60 1.48 1.53 2.06 1.64 3.20
Risky allocation, x¥ +x* 0.61 0.34 0.82 1.22 1.45 1.60 2.44 0.70 2.05
Relative factor weights
Vol-managed factor, w;, 0.72 -0.60 0.46 0.98 0.79 012 0.97 0.41 0.78
Original factor, w* 0.28 1.60 0.54 0.02 0.21 0.88 0.03 0.59 0.22
Panel A.3: Portfolio performance measures
Sharpe ratio
Original factor 0.42 0.23 0.40 0.48 0.38 0.53 0.74 0.77 0.77
Combination strategy 0.53 0.25 0.44 0.99 0.52 0.54 1.06 0.81 1.03
Difference 0n 0.02 0.04 0.50 0.14 0.00 0.32 0.04 0.26
CER (%)
Original factor 1.76 0.53 1.59 2.35 1.44 2.85 5.46 5.92 5.90
Combination strategy 2.79 0.61 1.94 9.74 2.71 2.88 11.32 6.57 10.52
Difference 1.03 0.08 0.35 7.39 1.27 0.03 5.86 0.65 4.63
Panel B: Additional controls for Fama and French (1993) three factors
Alpha, « (%) 5.24 -0.56 2.52 10.28 3.02 -0.19 5.51 0.66 5.45
3.49) (-0.65) (2.52 (6.56) (3.49 (-0.28) (5.52) (1.01) (5.72)
R? 0.41 0.40 0.35 0.26 043 0.47 0.49 0.51 0.39
Appraisal ratio, AR 0.37 -0.07 0.26 0.73 0.72 —-0.04 0.88 0.15 0.65

The “original factor” results correspond to the ex post optimal combination of original factor and risk-free asset, and the “combination strategy’

Mt RZ

Shanxi University of Finance and Economics

Panel A.3 of Table 3 confirms that almost
all combination strategies exhibit strong
in-sample performance gains relative to
the original factors.

b]

results correspond to the ex post optimal combination of original factor, volatility-managed factor, and risk-free asset.



4. Combination strateqies--- 4.2 in-sample tests

Table 4
Summary of spanning regressions: broad sample.

The table summarizes results from spanning regressions for 103 trading strategies. The spanning regressions are given

by for =a+ Bf + &, where f,, (f;) is the monthly return for the volatility-managed (original) anomaly portfolio. The

results in columns (3) and (4) correspond to univariate spanning regressions, and those in columns (5) and (6) are for -

regressions that add the Fama and French (1993) three factors as controls. Panel A reports results for the full set of We flnd that 77 Of the 103 Scaled

Shanxi University of Finance and Economics

103 trading strategies. Panel B presents separate results for the 9 factors and the 94 anomaly portfolios. Panel C breaks portfolios earn positive alphas in

the results down by trading strategy type. For each set of regressions, the table reports the number of alphas that - . .

are positive, positive and significant at the 5% level, negative, and negative and significant at the 5% level. We assess unlva“_ate Spannlng_tEStS and,_ .

statistical significance of the alpha estimates using White (1980) standard errors. aCCOI’dlngly, are aSS|gn8d pOSltlve

Additional controls for WEIgh'[S in the ex pOSt Optlmal
Univariate regressions Fama and French (1993) factors Combination pOI‘thliOS. Twenty_

Sample Total a = 0 [Signif.] a < 0 [Signif.] a = 0 [Signif.] a < 0 [Signif] three of the positive estimates are
(1) (2) (3) (4) (5) (6)

statistically significant at the 5%
level

Panel A: Combined sample

All trading strategies 103 77 [23] 26 [3] 70 [21] 33 [3]

Panel B: By category

Factors 9 8 [5] 1 [0] 7 [6] 2 (0]
Anomaly portfolios 94 69 [18] 25 [3] 63 [15] 31 [3]

Panel C: By trading strategy type

Accruals 10 8 [3] 2 (0] 6 [0] 4 0]
Intangibles 10 6[1] 4 [0] 5 [0] 5 (0]
Investment 11 7 1] 4 [1] 51[1] 6[1]
Market 1 1[1] 0 [0] 1[1] 0 [0]
Momentum 9 9 [9] 0 [0] 9 [9] 0 [0]
Profitability 22 19 [2] 3 [0] 19 [4] 3 [0]
Trading 21 14 [4] 7 1] 14 [4] 7 (2]

I Value 19 13 2] 6[1] 11 [2] 8 [0] _
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tableS . i
et sws miL mom mvw am e A BB The improvements for the MOM, ROE ,
m @ e W e e m ® O and BAB factors are statistically
Panel A: Real-time combination strategies Slgnlflcant at the 1% Ievel Across the
Sharpe ratio 1Nt 1 1
[S]p] Combination strategy (real time) 0.42 0.14 0.38 0.92 0.44 0.52 1.13 0.70 1.09 remalnlng SIX Strategles’ the Sharpe
[52] Original factor (real time) 046 019 043 |o049 | 031 0.56 078 | 068 | 079 ratio and CER differences are
Difference, [S1]-[S2] —0.04 -006 —0.06 0.44 0.13  —0.03 0.36 0.02 0.30 . e g
[0.64] [037] [041] Lloooll (053]  [0.20] [000]| [0.74] |[0.00] |n3|gn|f|cant.
|53] Combination strategy (ex post optimal) 0.53 0.26 0.50 0.99 0.58 0.64 1.21 0.73 1.11
Difference, [S1]-[S3] -011| -012 -012 -007 -0.14 -0.11 -0.07 -0.03 -0.02 o i i
[0.01]] [0.14] [0.08] [0.07] [0.37]  [0.00] [0.20] [0.41]  [0.78] ?'I['Ifnme of the Sharﬁ:)e ratéo aT(:::CER
CER (%) ITrerences are negative <Creal-time
|51] Combination strategy (real time) 1.56 0.00 1.41 8.47 1.96 2.74 12.25 419 10.88 - - g -
I52] Original factor (real time) 175 038 161 |229| 091 309 |544| 368 | 623 combination strategies and the ex post
Difference, [S1]-[S2] —0.19 -037 -020 6.18 1.04 -035 6.81 0.51 465 : ; : ;
[0.83] [027] [0.73] [J0o.001] [0.57]  [0.21] [0.00]| [0.60] |[0.00] Optlmal combination StfﬂtGglGS.)
|53] Combination strategy (ex post optimal) 2.79 0.67 247 9.87 3.42 4.04 14.55 5.36 12.34
Difference, [S1]-[S3] -123 -066 -1.06 -140 -146 -—1.30 -230 -117 -146 e |n Summary, Tab|e 5 ShOWS that
[0.01] [0.13] [0.10]  [0.07] [0.39]  [0.03] [0.15]  [0.25]  [0.30]

volatility management has potential
benefits for real-time investors in some

Panel B: Real-time combination strategies including Fama and French (1993) three factors

Sharpe ratio

[S1] Combination strategy (real time) 0.51 0.50 0.53 1.14 0.83 0.77 1.30 0.94 1.19 factors, but the gains are not systematic
[S2] Original factor + FF3 (real time) 0.61 0.61 0.61 0.94 0.85 0.80 1.23 0.97 0.98 - -
Difference, [S1] and [S2] -0.11 |-0.11 | -0.08 020 | -0.02 -003 007 |-0.03 0.20 and are mu_ch I?SS IMPressive than the
[0.22] |[0.03]| [0.31] |[0.00]| [0.85] @ [0.12] [0.23] |[0.10] | |[0.00] Correspond|ng |n_5amp|e results. These
[S3] Combination strategy (ex post optimal) 0.72 0.71 0.71 1.28 1.11 0.98 1.63 1.09 1.38 - e . . .
Difference, [S1]-[S3] —022 -021 -018 -0.14 -028 -021 —033 =015 —020 initial results indicate that real-time
[0.00] [0.01] [0.03] [0.01] [0.00]  [0.01] [0.00] [0.01]  [0.00] - - - -
CER (%) |mplementat|pn Issues de_g_rade portfolio
|51] Combination strategy (real time) 2.51 2.13 2.72 12.88 6.43 5.54 16.25 8.73 13.70 -
[S2] Original factor + FF3 (real time) 2.52 2.52 2.52 8.75 6.63 6.07 14.88 9.33 9.66 performance I_n the VOIatIIIty managed
Difference, [$1] and [S2] —0.02  —0.40 0.20 413  -019 -053 138  —0.60 4.04 pOfth“OS Settlng_
[0.99] [021] [0.77] [0.00] [0.92]  [0.13] [025]  [0.11]  [0.00]
|53] Combination strategy (ex post optimal) 5.21 5.05 5.09 16.39 12.33 9.60 26.53 11.79 19.11
Difference, [S1]-[S3] —271 =293 -237 -351 -583 —406 -1028 -3.06 —5.42
[0.00] [0.02] [0.04] [0.02] [0.00] [0.01] [0.00]  [0.01]  [0.00]



Panel A: Real-time combination strategies

CER difference:
Combination strategy (real time) versus

Sharpe ratio difference:
Combination strategy (real time) versus

table6

Original factor /" Combination strategy

< Original factor
(real time) L (ex post optimal)

(real time)

Combination strategy
(ex post optimal)

ASR ASR ACER ACER
Sample Total +(= +f= += +/-
(1) (2) (3 (4) (5] (6)
Panel A.1: Combined sample
All trading strategies 103 }' 58 [2] 1[0] f102 [39] }' 7207 0[0] 103 [41]
Panel A.2: By category
Factors 9 53] 4][0] o[o]f9I[2] 5[3] f4][0] o[o]f9I[2]
Anomaly portfolios 04 40 [5] [ 54 [2] 1[0] f93[37] 26 [4] | 68 [7] 0[0] f94[39]
Panel A.3: By trading strategy type
Accruals 10 3[0]17 (1] 0[0] f10[5] 3[0]17(2] 0[0] /10 [4]
Intangibles 10 4 [0] f 6 [0] O [0] f10[0] 1[0]f9[1] 0[0] /10 [4]
Investment 11 5[0]f6][0] 0[0] 11 [6] 5[0] f6[0] 0[0] f11 5]
Market 1 0[0]f1][0] of[o]f1 1] of[o]f1[o] ofo]f111]
Momentum 9 8[4]f1]0] 0[0] f9 5] 8[5]f1]0] 0[0] f9][5]
Profitability 22 10 [1] f 12 [0] 1[0]f21([7] 6[1] f16[1] 0[0] f22 (5]
Trading 21 10[1]f11[1] 0[0] 21 6] 6[1] f15]1] 0[0] 21 8]
Value 19 5(2] f 14 [0] 0[0] f19[9] 2[0] 117 [2] 0[0] f19[9]

Panel B: Real-time combination strategies including Fama and French (1993) three factors

Sharpe ratio difference:

Combination strategy (real time) versus

CER difference:
Combination strategy (real time) versus

Original factor4-FF3

Combination strategy

Original factor4-FF3

Combination strategy

(real time) (ex post optimal) (real time) (ex post optimal)
ASR ASR ACER ACER
Sample Total b +f= +f= =
(1 (2) (3) (4) (3) (6)

Panel B.1: Combined sample

All trading strategies 103 32 (2] 71 [13] 0 [0] {103 [77] 32 [3] [ 71 [10] 0[0] {103 [92]
Panel B.2: By category

Factors 9 3[2][6[1] 0[0] f9[9] 4[2] I5]0] 01[0] f9][9]
Anomaly portfolios 04 29 [0] [ 65 [12] 0[0] f94 [68] 28 [1] [ 66 [10] 0[0] /94 |83]
Panel B.3: By trading strategy type

Accruals 10 3[0] 7 (1] 0[0] f10[8] 3[0] 7] 0[0] f10 8]
Intangibles 10 1[0]f9](1] 0[0] f10[5] 1[0]f9[1] 0[0] f10[9]
Investment 11 3[0]f8[1] 0[0] f11]10] 3[0]fa[1] 0[0]f11]10]
Market 1 0[0]f1][0] of[o]f1 (1] of[o]f1[o] ofo]f11(1]
Momentum 9 8[1]f1]0] 0[o]f9[9] T[2]12]0] 0[o] /99
Profitability 22 8 [0] f14[2] 0[0] f22[14] 9[0] f13 (2] 0[0] f22 18]
Trading 21 6[1]f15[5] 0[0] f21[21] 5[1] f16 [3] 0[0] f21]21]
Value 19 3 (0] f16[3] 0[0] f19[9] 4[0] f15[2] 0[0] f19[16]

broad sample U 0 gmple te

Table 6 summarizes the results for out-of-
sample tests using our base case design with an expanding,
ten-year training sample, a leverage constraint of [y;] < 5,
and a risk aversion parameter of y = 5.
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table7

Sharpe ratio difference:

CER difference:

(N =103) (N = 103)
ASR Binomial ACER Binomial
Description +[/- p-value +[- p-value
(1) (2) (3) (4) (5)
Panel A: Real-time combination strategies
Base case design 45 [8] | 58 [2] 0.237 31[7]1f 72 [7] 0.000
Rolling-window training sample 49 (2] [ 54 (1] 0.694 17 [1]] 86 [19] 0.000
Risk aversion, y =2 48 [9] | 55 [2] 0.555 35[8]/ 68 [7] 0.001
Risk aversion, y =10 45 [B] | 58 [2] 0.237 31 (7] 72 (7] 0.000
Initial training sample length, K =240 45 [9] | 58 [10] 0.237 36 [8]/ 67 [11] 0.003
Initial training sample length, K =360 40 [9] | 63 [B] 0.030 31[8]/ 72 8] 0.000
Leverage consftraint, L < 1.0 49 [10] | 54 [2] 0.694 38 [4] ] 65 [5] 0.010
Leverage constraint, L < 1.5 47 [10] | 56 [3] 0.431 38 [7] /] 65 [7] 0.010
Leverage constraint, L < oo 45 [8] | 58 [2] 0.237 31[7]1) 72 [7] 0.000
Panel B: Real-time combination strategies including Fama and French (1993) three factors

Base case design 3202]/ 71 [13] 0.000 32 [3]1/ 71 [10] 0.000
Rolling-window training sample 3201/ 71 (8] 0.000 20[0]/ 83 [16] 0.000
Risk aversion, y =2 22 3]/ 81 [13] 0.000 24 [3]] 79 [10] 0.000
Risk aversion, y =10 31131/ 72 [12] 0.000 32 [3]1/ 71 [10] 0.000
Initial training sample length, K = 240 31[6]/)72[11] 0.000 35[9]/ 68 [10] 0.001
Initial training sample length, K =360 30[6]/ 73 [9] 0.000 28 (71 75 [9] 0.000
Leverage constraint, L < 1.0 22[2]) 81 [11] 0.000 27[3]1] 76 12] 0.000
Leverage constraint, L =< 1.5 21 (3] 82 13] 0.000 26 (2] 77 |9] 0.000
Leverage constraint, L < oc 311[3]) 72 [12] 0.000 3231/ 71 11] 0.000

p -value from a binomial test of the null hypothesis that positive and negative
performance differences are equally likely: A9/, B 181

 The robustness design with rolling-

window parameter estimation leads to a
slightly larger number of positive
Sharpe ratio differences but a
substantially smaller number of positive
CER differences.

Imposing a leverage constraint could
either improve performance if real-time
investors avoid taking extreme
positions or hurt performance if the
constraint prevents investors from
capitalizing on the information content
in lagged volatility.

In all, more than half of the Sharpe ratio
and CER differences are negative under
each specification.
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tab|e8 Alpha: Sharpe ratio difference: CER difference:
o Binomial ASR Binomial ACER Binomial
Description Total +/- p-value +/- p-value +f— p-value
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Spanning regressions

: : with real-time volatility-
Spanning regressions 103 77 (23] 26 [3] 0.000 45 [8] [ 58 [2] 0.237 31[7]1) 72 [7] 0.000 .
Spanning regressions with FF3 controls 103 70 [21] [ 33 [3] 0.000 32 [2] /71 [13] 0.000 32 [3] / 71 [10] 0.000 managed strategles

Panel B: Anomaly regressions

CAPM regressions 102 [93[73]]/ 9[3]  0.000 75 [19] /27 [1]  0.000 68[18] /34[1]  0.001 _ti ;
FF3 regressions 100 [81[60]/ 19 [5] 0000  [66[18]|/34[1] 0002  [55[19]|/45 1] 0.368 real-time anomaly strategies

« Studies showing cross-sectional anomalies routinely emphasize the alphas earned by these strategies relative to popular
asset pricing models such as the Capital Asset Pricing Model (CAPM) or Fama and French (1993) three-factor model.

» Alarge proportion of these out-sample alpha estimates are statistically significant.

« Adding an anomaly portfolio to the CAPM market factor in real time, for example, leads to a Sharpe ratio improvement in
75 out of 102 cases and a CER improvement in 68 out of 102 cases. Real-time performance relative to the Fama and
French (1993) three-factor benchmark is less impressive, with positive Sharpe ratio differences for 66 out of 100 strategies
and positive CER differences for 55 out of 100 strategies. These results indicate that real-time anomaly strategies fare
substantially better compared with real-time volatility-managed strategies.

» The results in Table 8 provide a useful backdrop to examine why the statistical support for out-of-sample combination
strategies is particularly weak in the volatility-managed portfolios setting. We consider three potential explanations: (i)
estimation risk in the out-of-sample portfolio choice exercise, (ii) low power in the out-of-sample tests, and (iii) structural
Instability in the conditional risk-return trade-off for the various factors and anomaly portfolios.
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(1) estimation risk

« Although estimation error is always a challenge with real-time portfolio choice applications, we are skeptical that it fully
accounts for our results for a variety of reasons. First, our empirical design incorporates several features intended to
mitigate estimation risk, including a leverage constraint on portfolio positions, a risk-free asset in the investment
opportunity set (Kirby and Ostdiek, 2012), and expanding-window parameter estimation.

» Second, DeMiguel et al. (2009b) emphasize that estimation risk is less problematic in applications, like ours, in which the
number of test assets is small.

« Third, our main results are based on comparisons of real-time strategies that include volatility-managed portfolios in the
Investment opportunity set with those that exclude volatility-managed portfolios from the investment opportunity set. Thus,
both the combination strategy and the benchmark suffer from estimation risk, and it is not obvious why one of the two
would be more adversely impacted.

 Fourth, if estimation risk is the primary explanation of the poor performance of the combination strategies, then we should
see more favorable results under specifications with longer training samples. Table 7 reveals, however, that lengthening
the initial training sample has little impact on our conclusions.

 Finally, Panel B of Table 8 provides direct evidence that in-sample alphas do translate into improved real-time
performance measures much more frequently outside of the volatility-managed portfolios setting.
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(i1) low power

Another common concern with out-of-sample tests is that they lack power relative to in-sample tests because the evaluation
period is shorter (e.g., Inoue and Kilian, 2004). Our focus on assessing the value of volatility management for real-time
Investors necessitates the use of out-of-sample tests.

Low power also does not seem to be a satisfactory explanation for our results. If volatility management is systematically
beneficial to investors, then we should see a majority of performance differences that are positive in Tables 6 and 7. Low
power might be an explanation for why an individual result is statistically insignificant, but it does not account for why most
of the performance differences have the wrong sign.
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(iii) structural instability

A more plausible economic explanation for the poor out-of-sample performance for the combination strategies is structural
Instability in the spanning regression parameters from Eq. (5) and the implied optimal weights.

table9 Frequency distribution for breaks

Description Total Ny =0 Ny =1 Ny =2 Ny=3 Ny, = 4 N
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Spanning regressions

Spanning regressions 103 0 10 52 34 7 2.37
Spanning regressions with FF3 controls 103 1 8 53 35 6 2.37

Panel B: Anomaly regressions

CAPM regressions 102 15 38 39 9 1 1.44
FF3 regressions 100 10 25 36 21 3 1.92

* InPanel A, we find strong statistical evidence of structural breaks in the spanning tests for the 103 volatility-
managed portfolios. 41 out of 103 tests identify three or more breaks. The average number of breaks is 2.37 for both
the univariate spanning regressions and the spanning regressions that control for the Fama and French (1993) factors.

 In contrast, structural breaks are less common in the standard time-series anomaly regressions in Panel B. In the
CAPM regressions, for example, 53 out of 102 strategies have one break or less, and the average number of breaks

. Is 1.44. -
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 Recent literature suggests that investors can enhance Sharpe ratios and lifetime utility by
adopting simple trading rules that scale positions in popular equity portfolios by lagged
variance. Two forms: direct investments in volatility-managed portfolios or combination
portfolios that invest in both the volatility-managed version and the original version of an
underlying strategy.

 Across a broad sample of 103 equity portfolios, volatility management degrades and
Improves performance at about the same frequency. From a practical perspective, the results
suggest that direct investments in volatility-managed portfolios are not a panacea of
Improved performance.

« Combination strategies that incorporate volatility management, in contrast, exhibit
systematically strong in-sample performance. On this point, we extend Moreira and Muir ’s
(2017) spanning regression analysis to our broader set of 103 equity strategies and show that
these portfolios tend to exhibit positive alphas.

« The Sharpe ratios and CERs for the out-of-sample combination portfolios are dramatically
less impressive than those earned by their in-sample versions. Moreover, the real-time
combination strategies routinely underperform simpler strategies constrained to invest in the
original, unscaled portfolios.
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covariance between excess returns for the two portfolios. To test the
null hypothesis of equal Sharpe ratios for portfolios i and j, we com-
pute the following Jobson and Korkie (1981) test statistic, which is

asymptotically distributed as a standard normal: Zj = L\/_“”‘ where
[

A_l .mg.hz_ .A_A_.ﬁ.__ l.AzAz lAEAE_ﬂiﬂjAz ] _

0=z (20!- G —26i6i6ij+ 3 4{6] + 31507 — 55 crjlj). The test incor

porates the correction noted by Memmel (2003).

In contrast, when expected returns are constant or independent of volatility,
equation (8) implies o = Cgll;;ll J,, where J, = (E[UIE]E[{%] — 1) > 0is aJensen’s
inequality term that is increasing in the volatility of volatility. This is because
the more volatility varies, the more variation there is in the price of risk that
the portfolio can capture. Thus, the alpha of our strategy is increasing in the

volatility of volatility and the unconditional compensation for risk.




